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Abstract

Background: The relationship between various external agents such as pollen, food, and infectious agents and
human sensitivity exists and is variable depending upon individual’s health conditions. For example, we believe that
the pathogenetic potential of the Merkel cell polyomavirus (MCPyV), the resident virus in skin, is variable and
depends from the degree of individual’s reactivity. MCPyV as well as Epstein-Barr virus, which are normally
connected with humans under the form of subclinical infection, are thought to be involved at various degrees in
several neoplastic and inflammatory diseases. In this review, we cover two types of Langerhans cell neoplasms, the
Langerhans cell sarcoma (LCS) and Langerhans cell histiocytosis (LCH), represented as either neoplastic or
inflammatory diseases caused by MCPyV.

Methods: We meta-analyzed both our previous analyses, composed of quantitative PCR for MCPyV-DNA,
proteomics, immunohistochemistry which construct IL-17 endocrine model and interleukin-1 (IL-1) activation loop
model, and other groups’ data.

Results: We have shown that there were subgroups associated with the MCPyV as a causal agent in these two
different neoplasms. Comparatively, LCS, distinct from the LCH, is a neoplastic lesion (or sarcoma) without presence
of inflammatory granuloma frequently observed in the elderly. LCH is a proliferative disease of Langerhans-like
abnormal cells which carry mutations of genes involved in the RAS/MAPK signaling pathway. We found that MCPyV
may be involved in the development of LCH.

Conclusion: We hypothesized that a subgroup of LCS developed according the same mechanism involved in
Merkel cell carcinoma pathogenesis. We proposed LCH developed from an inflammatory process that was
sustained due to gene mutations. We hypothesized that MCPyV infection triggered an IL-1 activation loop that lies
beneath the pathogenesis of LCH and propose a new triple-factor model.
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Background
Langerhans cell neoplasms are divided into two distinct
diseases, the Langerhans cell sarcoma (LCS) and Langer-
hans cell histiocytosis (LCH). Langerhans cells located in
skin, function as sentinel or antigen-presenting cells that
can capture invading viruses [1]. We discovered the rela-
tionship between Merkel cell polyomavirus (MCPyV)
and these two diseases are similar to Epstein-Barr virus
pathogenetic potential that by itself is involved in several
neoplastic and inflammatory diseases (Table 1).
In this review, we propose two distinct models for

LCS and LCH pathogenesis (Fig. 1). Today, some LCS
cases are considered as a malignant neoplasm initiated
by MCPyV infection [2]. On the contrary, LCH is a re-
active disorder with underlying neoplastic potential. In
other words, LCH is an inflammatory process that is
protracted by gene mutations, which we promote as an
IL-1 loop model that was quoted in the WHO Classifica-
tion of Tumours of Haematopoietic and Lymphoid tis-
sues Revised 4th Edition in 2017 [2] as the major
pathway in the development of Tumours derived from
Langerhans cell.
We further propose a new triple-factor model for the

pathogenesis of LCH.

LCS
MCPyV was discovered in 2008 and was linked to the
pathogenesis of Merkel cell carcinoma (MCC), which is
a rare and aggressive skin cancer occurring in the dermis
of individuals aged 60 years or older [3, 4]. Approxi-
mately 80% MCC harbors MCPyV, indicating its prom-
inent role in the development of the disease.
Mechanistically, MCPyV-induced oncogenesis is consid-
ered to be induced by MCPyV large T (LT) antigen
through molecular binding with the retinoblastoma pro-
tein [3]. Several tumorigenic pathways leading to MCC
were proposed. One was that the induced mutations of
MCPyV due to long exposure to ultraviolet light leads to
integration of the cytoplasmic viral sequences into the
DNA of originating MCC cells. MCPyV might primarily
reside in the skin, which was confirmed by the presence

of MCPyV-DNA sequences of cutaneous tissue in our
studies [5–7].
Langerhans cells are present beyond the middle of the

spinous epidermal layer [8], they have the capacity to
capture external pathogens [9], and can act as
antigen-presenting cells [10, 11]. We previously pro-
posed that external pathogens may be initially recog-
nized by Langerhans cells and may subsequently infect
Merkel cells which are mostly located at the basal cell
layer of the epidermis (Fig. 1). Therefore, we hypothe-
sized that Langerhans cells serve as a reservoir for
MCPyV and demonstrated this phenomenon by showing
the presence of MCPyV-DNA sequences in microdis-
sected Langerhans cells from dermatopathic lymphaden-
opathy [12].
We hypothesized the possibilities that some LCS cases

develop from a long standing reservoir cell for MCPyV
and showed higher frequency of MCPyV-DNA sequences
in LCS tissues with high viral load compared with that in
non-affected normal Langerhans cells [2, 13].

LCH
LCH is characterized by the proliferation of
CD1a-positive activated Langerhans (not atypical Lang-
erhans cell, morphologically)-like cells (LCH cells) gen-
erating inflammatory granuloma. LCH is classified by its
involvement of either a single organ system (SS-LCH) or
multiple organ systems (MS-LCH) [14]. The latter form
is frequent in children younger than 2 years, whereas
SS-LCH is more common in children older than 2 years
[11, 15]. This rare disease affects 4–9 children per mil-
lion each year [16–18]. The liver, spleen, and bone mar-
row (BM) are considered high-risk target organs for
LCH [19, 20]. Therefore, LCH is also classified as involv-
ing at least one high-risk organ [LCH-RO (+)] or a no
high-risk organ [LCH-RO (−)] [19] (Table 2) [21].
The morphology of lesions is so unvarying that pathol-

ogists cannot determine whether a given biopsy origi-
nates from a patient with SS-LCH or MS-LCH, from a
patient with LCH-RO (+) or LCH-RO (−), or from a
child or an adult [22]. However, the clinical course of
LCH is remarkably variable, ranging from lesions that

Table 1 Proposed relationship between viruses and cigarette smoking and host

Role Cancer-causing Inflammation-inducing

Epstein-Barr virus Malignant lymphoma Infectious mononucleosis

Gastric cancer Hemophagocytic syndrome

Burkitt lymphoma Necrotizing lymphadenitis

Nasopharyngeal cancer

Merkel cell polyomavirus Merkel cell carcinoma Langerhans cell histiocytosis (LCH)

Langerhans cell sarcoma

Cigarette smoking Lung cancer, Pulmonary LCH Chronic obstructive pulmonary disease, Pulmonary LCH
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spontaneously resolve, to a chronic disease that can be
widespread and sometimes lethal [23–26].
Although LCH was first described a century ago, the

etiology is still not understood [27]. For decades, it was
thought that the disease is a reactive disorder rather
than a neoplastic process [27]. As the former name, “eo-
sinophilic granuloma” indicates that lesional LCH
morphology is reminiscent of tissue reactions to an
intracellular pathogen, where tuberculous granuloma is
the prototype [22]. For example, scabies infections are
reported to induce Langerhans cell hyperplasia, which
mimics LCH [28]. However, recent studies indicate that
LCH has a more neoplastic character [29–31]. While
unexpected remission can rarely occur in neoplasms,
spontaneous healing is more common in LCH, suggest-
ing that there may be multiple pathological factors con-
tributing to the LCH process [22, 32, 33]. In this
context, an epidemiologic study revealed that risk factors
for MS-LCH involve an increase in infections, the use of

antibiotics in the first 6 months of life, and a family his-
tory of thyroid disease, whereas SS-LCH is significantly
associated with symptoms like diarrhea and vomiting in
the postnatal period [34].

Review
LCS: High viral load of MCPyV-DNA
In previous studies we specified the relationship between
MCPyV infection and LCS [2, 13]. Thus, we suggest that
MCPyV may play specific role as an oncogenic factor in
certain subtypes of LCS. Based on the foregoing, we
propose an LCS tumorigenesis model where MCPyV
may be a cause of LCS. In this regard, the recent discov-
ery of MCPyV as a causal agent opened new therapeutic
avenues for MCC [35]. Although MCPyV-LT expression
was not detected [13], some forms of LCS might origin-
ate from MCPyV-infected Langerhans cell (Fig. 1).
When confirmed, these findings will also open novel
possibilities for therapeutic interventions against LCS.

LCH: IL-17 endocrine model
Coury et al. found IL-17A to be elevated in the serum of
patients with LCH and suggested that it might be in-
volved in LCH pathogenesis according to the IL-17A
autocrine model [36]. The IL-17A autocrine model in
LCH and the IL-17A targeted therapies proposed by
Coury et al. [36] have generated considerable contro-
versy. Those authors showed high serum IL-17A levels
in LCH and argued that serum IL-17A supported
healthy monocyte-derived dendritic cell (DC) fusion

Fig. 1 Proposed role of MCPyV in the development of LCH and LCS. We propose two distinct models for LCS and LCH pathogenesis. LCS is a
malignant neoplasm initiated by MCPyV infection. On the contrary, LCH is a reactive disorder with underlying neoplastic potential. In other words,
LCH is an inflammatory process that is prolonged by mutations. MCPyV: Merkel cell polyomavirus; LCH: Langerhans cell histiocytosis; LCS:
Langerhans cell sarcoma; UV: ultraviolet; LC: Langerhans cell; LCH cells: CD1a-positive activated Langerhans (not atypical Langerhans cell,
morphologically)-like cells in LCH lesion; LCS cells: sarcoma cells in LCS

Table 2 Comparison between the present and former
classification of LCH [21]

Classification Prevalence

Present Former

LCH-RO (+) MS Letterer-Siwe disease 10%

LCH-RO (−) MS Hand–Schüller–Christian disease 20%

SS Eosinophilic granuloma 70%

LCH-RO (+): LCH involving at least one high-risk organ; LCH-RO (−) LCH
involving a no high-risk organ; SS-LCH: LCH involving a single organ system;
MS-LCH: LCH involving multiple organ systems
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capacities in vitro, rather than serum IL-17A levels,
which is more correlated with LCH severity (i.e., the
IL-17A paradox) [36]. On the contrary, Allen et al. [37–
39] were unable to confirm the data presented in Coury
et al. [36]. So started the controversy on the role of
IL-17A [40, 41]. IL-17A is a proinflammatory cytokine
produced by various cells including T helper type 17
cells (Th17), γδTcells, CD8+ T cells, natural killer T
cells, lymphoid tissue inducer-like cells, neutrophils,
monocytes, and natural killer cells [42–44]. IL-17A acts
in both innate and acquired immunity [44]. Innate
lymphoid populations can rapidly produce IL-17A [44],
which is maintained at low levels in the absence of ex-
ternal stimulation [45]. Moreover, IL-17A/IL-17A recep-
tor is highly important for host defense [46]. We
approached the IL-17A controversy and the IL-17A
paradox from a new perspective, i.e. considering the ex-
pression levels of IL-17A receptor, based upon what we
propose an IL-17A endocrine model of LCH [47].
Our study about IL-17 [47] resulted in three major

findings. First, the serum levels of IL-17A were higher in
LCH as compared to controls with no significant differ-
ences among LCH subclasses. Second, higher levels of
IL-17A receptor protein expression in MS-LCH were
detected as compared to SS-LCH. Third, our results
using LC/MS and LC/MRM-MS did not confirm the
presence of IL-17A in LCH cells. An endocrine model
supported our data: the IL-17A serum levels and expres-
sion levels of IL-17A receptor are higher in LCH tissue
in patients with LCH. Accordingly, we postulate that the
level of IL-17A receptor expression in LCH cells defines
the LCH subclass [47]. We consider LCH as a reactive
and neoplastic disorder that is influenced by environ-
mental triggers such as pathogens or smoking. In this
context, IL-17A is one of the proinflammatory cytokines
acting against infective agents. A high serum IL-17A
level might be considered to indicate the possibility of
an infection in relation to LCH. Serum of patients with
LCH can show an upregulation of IL-17A receptor in
LCH cells but also in healthy monocyte-derived DCs.
This hypothesis could elucidate the IL-17A paradox pre-
sented by Coury et al. [36]. In general, cytokines work
throughout autocrine or paracrine mechanisms; how-
ever, IL-3 and some other proinflammatory cytokines ex-
hibit endocrine mechanisms [47, 48]. In our analysis of
LCH tissue, the results using LC/MS and LC/MRM-MS
confirm the observation that the IL-17A reactivity in
LCH cells observed by immunofluorescence [36] is due
to nonspecific antibody binding as described by Allen et
al. [37–39]. We resolved this problem by adding data of
IL-17A RECEPTOR mRNA expression uploaded by
Allen et al. [39]. Generally, stimuli are recognized by re-
ceptors such as Toll-like receptors (TLRs) in Langerhans
cells [44, 49]. LCH cells also express these receptors in

the GSE16395 dataset [39]. LCH cells that are in an ac-
tive state [50] can induce IL-17A producers in a similar
manner as activated Langerhans cells promote Th17
polarization [44]. In this context it would be useful to
evaluate CD4/CD8 ratio and assess Th17 in peripheral
blood of patients affected by LCH compared to healthy
individuals. Though Allen et al. showed low serum levels
of IL-17A [37, 38], Makras et al. showed high serum
levels of IL-17A using the same enzyme-linked im-
munosorbent assay (ELISA) kit procedure in both: pa-
tients with LCH and controls without significant
difference [41]. As IL-17A receptor is ubiquitously
expressed [36, 44], it might be difficult to detect
IL-17A in the blood as replied Delprat et al. to Allen
et al. [37]. We analyzed patient’s sera using a
Bio-Plex suspension array system (Bio-Rad), which is
different from the other ELISA systems [37, 38, 41].
We found that the serum levels of IL-17A were
higher in LCH as compared to controls with no sig-
nificant differences among LCH subclasses. For host
defense, IL-17A/IL-17A receptor complex is import-
ant [46], since IL-17A is commonly produced during
viral infection [51]. In LCH, an overreaction by mu-
tated LCH cells against stimuli such as viral agents
might occur, including increased IL-17A receptor ex-
pression. In the context of infection, pathogens such
as Epstein–Barr virus [52], human cytomegalovirus
[53], and human herpes virus 6 [54, 55] were proven
to exist in LCH cells. Although they were regarded as
bystander in the LCH lesion in a case-controlled
sero-epidemiological study and in situ analysis [11, 56],
these investigations were done in 2008 before the discovery
of BRAF gene mutations LCH cells in 2010 [31]. At present
there is requirement to reexamine the health condition in
patients with or without BRAF mutated precursor LCH
cells. As reported using the LCH tissue [11, 57–60], serum
levels of IL-1a and IL-6, which are known to stimulate
Th17 [44], were also significantly higher as compared to
controls. Our own analyses on LCH tissues using LC/MS
and LC/MRM-MS could not confirm IL-17A positivity in
LCH cells (i.e., the IL-17A autocrine model in LCH) [36].
Rather, we propose an IL-17A endocrine model and stress
that alteratins in IL-17A receptor expression levels are im-
portant for defining LCH subclasses. Low IL-17A levels in
sera are maintained by γδT cells in emergencies such as in-
fection [45]. Allen et al. also showed that CD3-positive cells
in tonsils produced IL-17A [37, 39]. In 2014, Lourda et al.
investigated the presence of IL-17A-producing cells among
peripheral blood mononuclear cells isolated from LCH pa-
tients and observed a high percentage of IL-17A(+) mono-
cytes in peripheral blood of LCH patients compared to
controls [61].
IL-17A/IL-17A receptor signaling pathways include

matrix metalloproteinase-3 (MMP3) or MMP12 [62–64].
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These MMP3 and MMP12 belong to a series of 1410
genes, the levels of which were more than twofold higher
in LCH cells as compared to Langerhans cells in the
re-analysis of GSE16395 mRNA data. These higher ex-
pression levels of MMP3 and MMP12 not only confirm
IL-17A/IL-17A receptor signaling roles in LCH cells but
also explain the inflammatory process of LCH such as
bone absorption and accumulation of eosinophils [65–67].
In summary, LCH is a neoplastic disorder driven by ab-
normalities such as BRAF gene mutation [31] thus the se-
verity of LCH might be driven by an inflammatory process
under the form of a cytokine storm, especially involving
IL-17A/IL-17A receptor signaling pathways. In the future,
stimuli that govern IL-17A or IL-17A receptor production
might serve as therapeutic targets to stop LCH progres-
sion, similar to cessation of smoking which induces pul-
monary LCH regression [11, 68], which is almost always a
disease of smokers [2].

LCH: IL-1 loop model
Patients with LCH often have dermal disorders such as
seborrheic dermatitis [19] concomitant to LCH lesions
[69], preceding [70–72], or following LCH lesions [73].
We recently described the possibility of a causal rela-
tionship between LCH and dermotropic MCPyV [12],
which was discovered as the major pathogenic agent in
MCC of the skin in 2008 [3]. Our data indicate that
MCPyV-DNA sequences are present in LCH tissues ex-
cluding pulmonary LCH, with significant differences be-
tween LCH tissues and controls that included patients
with dermatopathic lymphadenopathy and reactive
lymphoid hyperplasia [12]. The numbers of MCPyV-DNA
sequences in LCH tissues from patients younger than
2 years indicated a significant difference from tissues of
non-LCH dermal disease patients of the same age [12].
Our data suggest that LCH is a reactive disorder
with an underlying oncogenic potential. Thus, both
LCH and pulmonary LCH harbor the BRAF V600E
mutation [31, 74, 75] and NRAS mutation [76] and
appear related to external stimuli such as viral infec-
tion [12, 77, 78] and cigarette smoking [79, 80]. In
addition, the removal of such stimuli is reported to
cause spontaneous healing of LCH [68, 81–83].
Expression of the constitutively active BRAF V600E

mutant in LCH cells is predicted to bypass the require-
ment for mitogen-induced activation of RAF by RAS
[31, 84]. The identification of activating BRAF mutations
supports the hypothesis that LCH is a process with
oncogenic potential [31]. A mouse LCH model using a
BRAF V600E construct under the control of CD11c pro-
moter and a BRAF V600E construct under control of
the langerin promoter indicates that the BRAF V600E is
not only a marker but also an essential driver of LCH
pathogenesis [85]. Moreover, phosphorylated extracellular

signal-regulated kinase (ERK) (pERK) is rapidly dephos-
phorylated by dual specificity phosphatase 6 (DUSP6)
[86, 87], which is overexpressed in LCH cells [39].
However, BRAF V600E gene mutations are also de-
tected in non-neoplastic disorders such as nevus cell
nevus [88] and hyperplastic polyps of the colon [89].
Thus, LCH pathogenesis requires both limited prolif-
eration of precursor LCH cells harboring the BRAF
V600E mutation and the accumulation of gene muta-
tions or an inflammatory trigger that activates the
RAS/RAF/MEK/ERK signaling pathway [84].
MCPyV interferes with the function of DC towards

evasion of the immune surveillance by targeting a
NF-κB essential modulator [90] and down-regulating
TLR9 [91]. Exposure to MCPyV as measured by serum
antibodies against the viral capsid proteins appears to be
widely prevalent among healthy subjects [92, 93]. In-
apparent existence of MCPyV is indicated on the skin
and environmental surface [94, 95]. Pancaldi et al. [96]
indicated that buffy coats of healthy adult blood donors,
which were examined for MCPyV-DNA tag sequences,
showed a prevalence of 22%, with viral loads ranging
from 10 to 100 molecules per 100,000 cells (0.0001 to
0.001 per cell). Mertz et al. [97] reported that CD14+
CD16− inflammatory monocytes are a reservoir for
MCPyV, but CD14lowCD16+ resident monocytes, lym-
phocytes, or granulocytes are not. Our data from
micro-dissected LC in both dermatopathic lymphaden-
opathy [12] and LCS [13] suggest that monocytes, pre-
cursor Langerhans cells, or Langerhans cells are one of
the reservoir cells for MCPyV. In addition, members of
the TLR/IL-1 receptor superfamily appear to play a fun-
damental role in the immune response [98]. Viral
“pathogen-associated molecular patterns” are recognized
by specific TLRs [99]. TLR agonists stimulate IL-1β pro-
duction in DC [100], where TLR-triggered ERK activa-
tion play important roles [101]. IL-1α expression is
induced by TLR-mediated NF-κB activation; such activa-
tion has been observed in some LCH cases [102, 103],
with/without the presence of IL-1β [104]. All TLRs ex-
cept TLR3 use the common MyD88-dependent pathway
[105]. MyD88 is one of the adaptor proteins that links
TLR/ IL-1 receptor [106] and binds to pERK via its
D-domain, thereby preventing pERK-DUSP6 interaction
and maintaining ERK in an active, phosphorylated state
for a longer period [86]. This MyD88-dependent signal
may lead to enhanced cell activation, proliferation, and
eventually, accumulation and prolonged survival [86, 107]
of a given LCH lesion [108].

LCH: ITIH-4
Interalpha-trypsin inhibitor heavy chain 4 (ITIH4, [PDB:
Q14624]) is an acute-phase-related protein [109] and
potential new biomarker for distinguishing MS-LCH and
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SS-LCH. Acute-phase proteins are involved in
non-specific, physiological immune functions within the
innate immune system [110]. The ITIH4 molecule has
been detected in animals during experimental bacterial
and viral infections [111].
Martel-Jantin et al. [112] reported seroprevalence rate of

MCPyV antibodies of children 12 months or younger (49/
105) in Cameroon and pointed out the presence of spe-
cific maternal antibodies in very young children. Their
data indicated that MCPyV infections mostly occurred
during early childhood, after the disappearance of specific
maternal antibodies [112]. On the contrary Tolstov et al.
[93] reported seroprevalence rate of MCPyV antibodies of
children of 1 year or younger (0/6) in patients with LCH.
We [12] identified a relationship between LCH and
MCPyV. MCPyV-DNA in PBMC correlated with
LCH-RO (+) [12]. Among patients with LCH-RO (−)
(MS-LCH and SS-LCH), MCPyV-DNA was restricted to
lesional LCH cells [12], thus we predicted that primary
MCPyV infection may influence the LCH subtype involv-
ing cells in an early-activated state [27].
Generally, no response is observed after secondary

viral infection [111]. For example, primary respiratory
syncytial virus infection at 6 months or earlier often in-
duces severe disease [113], although nearly all children
are infected by 2–3 years of age [114]. Similarly, primary
Epstein-Barr virus and cytomegalovirus infections in eld-
erly individuals cause a severe condition called infectious
mononucleosis; nonetheless, nearly all children are in-
fected with these viruses [115]. Although no response is
observed after MCPyV infection [94, 96], Kumar et al.
[116], however, found that MCPyV-specific T helper
cells (in vitro model of a secondary infection) secrete
several cytokines, including IL-10. IL-10 is an
anti-inflammatory cytokine and is one of cytokines to be
produced in LCH [21]. ITIH4 production is
up-regulated by IL-6 [109], which is known produced in
LCH [21]. Innate immune function between newborns
and elderly is extremely different and large quantities of
IL-6 after stimulation of receptors, such as TLR, by term
newborns are indicated [117]. In LCH, MCPyV infection
may induce hyper-immunity in both LCH cells [108]
and other inflammatory cells [11, 21].

LCH-RO (+) and LCH-RO (−)
We reported the presence of MCPyV-DNA in the periph-
eral blood cells of patients with LCH-RO (+) but not in
the blood cells of patients with LCH-RO (−) [12]. Berres
et al. [85] reported that patients with LCH-RO (+) carried
the BRAF V600E mutation in circulating CD11c+ and
CD14+ cellular fractions as well as in bone marrow CD34
+ hematopoietic cell progenitors, whereas the mutation
was restricted to lesional LCH cells in patients with
LCH-RO (−). These findings (Table 3) specifically

observed in LCH-RO (+) suggest the LCH pathogenetic
pathway, though it needs further confirmation to
conclude.

Pulmonary LCH
The incidence of BRAF mutation did not differ signifi-
cantly [31] between pulmonary LCH that has been
regarded as reactive to smoking [11, 74, 79] and
non-pulmonary LCH that has been regarded as a neo-
plastic process [11, 29–31, 118]. Since smoking increases
the number of Langerhans cells in chronic obstructive
pulmonary disease [119], precursor LCH cells may over-
react to smoking. Similarly in cutaneous LCH, overreac-
tion to stimuli such as a dermotropic MCPyV infection
may occur [12].

Spontaneous regression in LCH: Triple-factor model
Recently, congenital “self-healing” LCH (Hashimoto--
Pritzker disease) condition was proposed as a model of
LCH where Kansal et al. identified V600D mutation in
Exon 15 of the BRAF gene [120]. As shown in Table 2
[21], patients with SS-LCH account for the majority of
LCH patients. While unexpected remission can rarely
occur in neoplasms, spontaneous healing is more com-
mon in LCH especially in SS-LCH, suggesting that there
may be multiple pathogenetic influences to the LCH
process [22, 32, 33].
In pulmonary LCH, the removal of stimuli, i.e. cessa-

tion of smoking, is well known cessation process for
spontaneous healing [68, 81–83]. However, recent data
indicate both LCH and pulmonary LCH harbor the
BRAF V600E [31, 74, 75] and NRAS mutation [76] and
appear linked to external stimuli such as viral infection
[12, 77, 78] and cigarette smoking [79, 80].
We think that spontaneous healing in both LCH and

pulmonary LCH suggest an oncogene-induced senes-
cence [121] according to Chilosi, et al. who considered
that oncogene-induced senescence distinguishes indolent
from aggressive forms of pulmonary LCH and
non-pulmonary LCH [122].
Using an in vitro model, Lipsky et al. [107] demon-

strated that IL-1 production and signaling from the IL-1
receptor are necessary components of Raf-induced
transformation of NIH 3 T3 cells, which exclude other
factors involvement in the vivo model [85].

Table 3 Detection of MCPyV-DNA and BRAF mutation in PBMC
of patients with LCH

Classification MCPyV-DNA BRAF mutation

LCH-RO (+) (+) (+)

LCH-RO (−) (−) (−)

Status of PBMC (peripheral blood mononuclear cells) of patients with LCH
based on both our and other researcher’s data [12, 85]
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The only BRAF V600E mutation does not seem to
affect prognosis [2, 123]. We proposed a triple-factor
model for pathogenesis of LCH (Fig. 2). We think that
balance between oncogene-induced senescence [121]
and the requirement of IL-1 autocrine loop [2, 107, 108]
of BRAF V600E mutation in pulmonary and
non-pulmonary LCH indicates the clinical severity of the
disease (Fig. 3).

Bone lesion in LCH
Approximately 80% of patients affected by LCH indicate
presence of lesions in bone [124]. There are also bone
lesions in recurrent LCH, even if it develops as
MS-LCH, knowing that recurrent lesions may occur
only in bone. In the LCH lesions, multinucleated giant
cells coincide in bone as well as in skin and lymph
nodes. In such conditions, tartrate-resistant acid phos-
phatase (osteoclast marker), vitronectin receptor, cathep-
sin K, and MMP9 are readily detected [125]. Bone
homeostasis is a complex process controlled not only by
bone metabolic cells but also by interaction with other
distant tissues and cells. Both bone and immune system
share many specific proteins such as cytokines that form
a functional network [126, 127]. In this regards, Cathep-
sin K protease is important for bone resorption by oste-
oclasts, compare to DCs, where it acts to regulate
signals from TLR9 and is involved in the Th17 cells dif-
ferentiation [128]. Many immune system cytokines are
involved in bone metabolism, such as involvement of
IL-1, IL-6 in the heightening of bone resorption by oste-
oclasts also producing a cytokine storm. In particular,
the receptor activator of nuclear factor kappa-B ligand
(RANKL) is regarded as the most important protein
[129]. RANKL is expressed on T cells and osteocytes
[130] and is an essential protein in activation of DCs
and differentiation of osteoclasts. In addition, the serum

sRANKL value is significantly higher in LCH patients
than in the control group [131]. We have found that
MCPyV-DNA is also amplified in bone LCH [12].
MCPyV not only exists in the skin [5, 6, 94] but also ex-
ists in the blood of healthy people [96] and MCPyV is
recognized by precursor LCH cells and appears to in-
duce LCH lesion formation in bone which has so-called
cytokine storm in order to keep homeostatic microenvir-
onment. On the other hand, it has been pointed out that
RANKL produced by regulatory T cells is involved in the
metastasis of breast cancer [132]. In LCH, it is known
that many regulatory T cells exist in lesions [23] and play
a similar role in LCH bone lesion formation. Studies and
treatments focusing on these relationships have also
been realized [131, 133, 134].

Conclusions
We have proposed that there are subgroups of clinical
conditions associated with MCPyV designated as two
different Langerhans cell neoplasms, LCS and LCH in
comparison to Epstein-Barr virus and cigarette smok-
ing pathogens (Table 1, Fig. 1).
Although there is a case report indicating progres-

sion from LCH to LCS [135] and case reports of de-
tection of BRAF mutation in LCS [136, 137], these
two diseases are not in the same spectrum consider-
ing age distribution, neoplastic cell morphology, in-
flammatory granuloma, and cytokine storm release.

Fig. 2 Proposed triple-factor model for LCH pathogenesis. We
propose a triple-risk factor model for LCH pathogenesis. Triple-risk
factor model is composed of three factors: cytogenetic abnormalities
such as BRAF mutation, stress such as MCPyV infection and cigarette
smoking, and reaction

Fig. 3 Proposed reaction model in LCH activity. We propose a
triple-risk factor model for LCH pathogenesis. Triple-risk factor
model is composed of three factors: cytogenetic abnormalities
such as BRAF mutation, stress such as MCPyV infection and
cigarette smoking, and reaction controlled by balance between
an oncogene-induced senescence and an IL-1 loop. An
oncogene-induced senescence is induced by cytogenetic
abnormalities such as BRAF mutation and MEK mutation. An IL-1
loop is triggered by stress such as MCPyV infection, EBV
infection, and cigarette smoking. An IL-1 loop may induce
cytokine storm
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Finally, there is a correlation between LCH subtypes
and inflammatory factors such as expression of ITIH4
molecule [138] and IL-17A receptor [47]. However,
there are no specific pathological definitions between
the LCH subtypes such as self-healing SS-LCH,
LCH-RO (−), and life-threatening LCH-RO (+). The
principal pathological characteristics of LCH include
the morphologic aspects of activated Langerhans cells
adjoined to inflammatory granuloma. Therefore, we
propose that LCH entity is an inflammatory process
that is protracted by gene mutations occurring in the
LCH cells interacting with other immunologically
competent cells (Fig. 4) [108].
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