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The emerging roles of phosphatases in
Hedgehog pathway
Long Zhao1, Liguo Wang2, Chunli Chi2, Wenwen Lan2 and Ying Su2*

Abstract: Hedgehog signaling is evolutionarily conserved and plays a pivotal role in cell fate determination,
embryonic development, and tissue renewal. As aberrant Hedgehog signaling is tightly associated with a
broad range of human diseases, its activities must be precisely controlled. It has been known that several
core components of Hedgehog pathway undergo reversible phosphorylations mediated by protein kinases
and phosphatases, which acts as an effective regulatory mechanism to modulate Hedgehog signal activities.
In contrast to kinases that have been extensively studied in these phosphorylation events, phosphatases were
thought to function in an unspecific manner, thus obtained much less emphasis in the past. However, in recent years,
increasing evidence has implicated that phosphatases play crucial and specific roles in the context of developmental
signaling, including Hedgehog signaling. In this review, we present a summary of current progress on phosphatase
studies in Hedgehog pathway, emphasizing the multiple employments of protein serine/threonine phosphatases
during the transduction of morphogenic Hedgehog signal in both Drosophila and vertebrate systems, all of which
provide insights into the importance of phosphatases in the specific regulation of Hedgehog signaling.
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Background
The Hedgehog (Hh) pathway is a conservative ligand-
dependent cellular signaling mechanism, playing a vital
role in diverse biological processes, such as cell prolife-
ration and differentiation, embryonic development, and
maintenance of stem cell status in adults [1]. Aberrant
Hh signaling activities have been implicated in many hu-
man disorders including birth defects and cancers [2, 3].
Therefore, the activity of Hh signaling is required to be
precisely controlled.
Protein phosphorylation is one of the most important

and well-studied post-translational modifications [4].
Nearly one-third of proteins in cells are subject to at
least one-time phosphorylation during their whole lives
[5]. Protein phosphorylation is a reversible process,
mediated by two types of enzymes: protein kinase and
protein phosphatase [6]. A protein kinase is responsible
for transferring a phosphate group from ATP to a serine,
threonine or tyrosine residue at a substrate protein,
while a phosphatase is in charge of removing phosphates
from the substrate. The balance between kinase and

phosphatase activities controls phosphorylation status of a
substrate protein, alteration of which is capable of affect-
ing its almost every aspect, such as conformation/struc-
ture, stability, activity, protein-protein interaction [6]. In
contrast to protein kinases, protein phosphatases have
been much less studied. They were initially considered as
possessing broad and constitutive activities without func-
tional specificities. However, increasing evidence is indi-
cating that protein phosphatases are regulated in complex
manners and are highly specific towards different protein
substrates [6].
In the context of developmental signal transduction,

protein phosphorylation has been revealed to play a
critical role in precisely controlling the status and
amplitude of signaling pathways [6]. In Hh signaling
pathway, several core components have been found to
undergo phosphorylations, which significantly contri-
bute to proper controls of Hh signaling outcomes [7].
Although the executing kinases in these phosphoryl-
ation events have been intensely studied [8], relatively
little is known about the responsible protein phospha-
tases. In this review, we mainly summarize emerging
studies of phosphatases involved in regulation of Hh
signaling in recent years, with a highlight of multiple
employments of protein phosphatase 2A (PP2A), one
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of abundant and important cellular protein phospha-
tases, during Hh signal transduction cascade, empha-
sizing the equal importance of phosphatase as kinase
in regulating Hh signaling.

Principles of Hh signaling transduction
Since the original discovery of hh gene in Drosophila
melanogaster as a regulator of body patterning during
embryonic development, the knowledge about principle
mechanism of Hh signal transduction has dramatically
increased over the past decades [1, 9]. The intense
genetic research in Drosophila has elucidated the core
Hh signal transduction cascade (Fig. 1 a and b), which is
initiated by two transmembrane proteins, a signal recep-
tor Patched (Ptc) and an essential signal activator
Smoothened (Smo). In the absence of Hh ligand, Ptc

inhibits Smo activity, probably by preventing its cell
surface localization. A transcription factor Cubitus inter-
ruptus (Ci) is proteolytically processed, which is facili-
tated by a cytoplasmic signal transducer complex
consisting of Costal2 (Cos2), Fused (Fu), and Suppressor
of Fused (Sufu), to produce a transcriptional repressor
CiR for Hh target genes (Fig. 1a). Once Hh binds to Ptc,
Smo is relieved from Ptc inhibition and becomes acti-
vated, eventually resulting in the stabilization of Ci,
which is converted to a transcriptional activator CiA to
replace CiR in nucleus and switch on the transcription
of Hh target genes (Fig. 1b) [10–17].
The core Hh signal transduction shares same principle

from Drosophila to mammals, although the mammalian
pathway is more complex owing to the presence of mul-
tiple ligands, receptors and transcription factors (Table 1)

Fig. 1 Schematic of Hh signal transduction in Drosophila and vertebrates. a and b In Drosophila, without Hh ligand, the phosphorylated
transcription factor Ci undergoes proteolytic cleavage to produce a truncated form as a repressor for target gene transcription (a). With Hh, the
pathway activator Smo is relieved from receptor Ptc inhibition to get phosphorylation and plasma membrane accumulation, which triggers a
series of phosphorylation events on Cos2 and Fu. Eventually, full-length Ci is stabilized to enter nucleus activating target gene expression
(b). c and d In vertebrates, the principal rule of Hh signal transduction is conserved. However, several differences are indeed existing:
signaling activation takes place at the primary cilia instead of plasma membrane, Sufu plays a more critical role to transduce signal rather
than Fu, and Cos2 homolog Kif7 obtains phosphorylation at basal condition but not during Hh signal activation
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[18]. This complication can be representatively reflected
by the diverse functions of Glioma-associated oncogene
homologue (Gli) proteins, the Ci homologous proteins
in vertebrates. Three members are known in Gli family:
Gli1, Gli2, and Gli3. Gli1 mainly serves as a target gene
of Hh signaling. Gli2 and Gli3 share the transcriptional
task of Ci in Hh signaling: Gli2 preferredly contributes
to the activator form GliA, and Gli3 is the major source
of repressor form GliR [19, 20].
Distinct from Drosophila membrane-mediated Hh

pathway, vertebrate Hh pathway is transduced in a man-
ner depending on primary cilium, a microtubule-based
membrane protrusion and antenna-like cellular struc-
ture, although the exact biochemical mechanisms remain
largely unclear (Fig. 1 c and d) [1]. Hh-induced Smo ac-
cumulation on primary cilia and the following transpor-
tation of Gli proteins to tips of cilia are prerequisite
steps for Gli nucleus translocation. As most Drosophila
cells lack cilium structure during development, it was
thought that cilia-mediated Hh signaling is restricted
within vertebrates. However, intriguingly, a cilia-mediated
Hh pathway in Drosophila olfactory sensory neurons was
characterized recently [21], indicating that ciliary Hh path-
way is also conserved in Drosophila system.

Major phosphorylation events in Hh pathway: A
kinase view
Protein phosphorylation represents one of the most com-
mon post-translational modifications in eukaryotes. Not
surprisingly, it also occurs on multiple components during
Hh signal transduction [7]. During the past decades,
phosphorylation events in Hh pathway have been exten-
sively studied, mainly focusing on the characterization of
executing kinases [8], reflecting a fine-tuned responding
mechanism for cellular components to precisely transduce
Hh signal.
Smo, a seven-pass transmembrane protein with a long

carboxyl-terminal intracellular tail, is one of the best-

studied components for phosphorylation modification in
Hh pathway. Upon Hh stimulation, Smo protein under-
goes multiple phosphorylations at its intracellular tail
[22], by which Smo is activated to transduce signals to-
wards downstream effectors. In Drosophila, a sequential
phosphorylation by cAMP-dependent protein kinase
(PKA) and casein kinase I (CK1) [22–24] is the most
critical step to inhibit Smo ubiquitination and its subse-
quent endocytosis and degradation [25, 26], resulting in
Smo cell surface accumulation. Moreover, these PKA-
CK1 phosphorylations drive a conformation switch of
Smo cytoplasmic tail from a closed inactive to an open
active form [27], facilitating Smo maximal phosphoryl-
ation by other kinases, such as G-protein-coupled recep-
tor related kinase 2 (GRK2/Gprk2) and CKIγ/
Gilgamesh(Gish) [28–32], to achieve full activation of
Smo. However, these PKA-CK1 clusters are not found at
vertebrate Smo. Instead, GRK2 and CK1 were thought
to replace the role of PKA-CK1 in activating vertebrate
Smo by promoting its ciliary localization and active
conformation [28, 29, 31, 33–36].
Ci/Gli protein, the transcription effector of Hh path-

way, is another key component modulated by phosphor-
ylations, and its phosphorylation events exhibit high
conservation between Drosophila and vertebrates. It has
been well established that multiple-sites phosphoryla-
tions on Ci/Gli by PKA, PKA-primed CK1, or PKA-
primed glycogen synthase kinase 3 (GSK3), when Hh
signal is off, facilitate the recruitment of Cullin1-based
E3 ubiquitin ligase complex containing a F-box protein
Slimb (Drosophila) or β-TrCP (vertebrates), producing a
truncated transcriptional repressor CiR/GliR through
proteolytic processing [37–45]. In contrast, when Hh
signal is switched on, the transcriptional activator form
of Ci/Gli, converted from full-length Ci/Gli, is eventually
subject to complete degradation catalyzed by another
Cullin3-based E3 ubiquitination ligase complex that con-
tains HIB/Roadkill (Drosophila) or SPOP (vertebrates)

Table 1 Core components of Hh pathway in Drosophila and vertebrates

Component Function Protein Type Drosophila Protein Vertebrate Protein

Ligand Secreted protein Hedgehog (Hh) Sonic Hedgehog (Shh),
Desert Hedgehog (Dhh),
Indian Hedgehog (Ihh)

Receptor 12-transmembrane protein Patched (Ptc) Patched1 (Ptch1),
Patched2 (Ptch2)

Transcriptional activator
and repressor

Zinc finger transcription factor Cubitus interruptus (Ci) Glioma-associated oncogene
homologue (Gli1–3)

Signal activator 7-transmembrane protein,
G-protein-coupled-receptor (GPCR)

Smoothened (Smo) Smo

Signal transducer Kinesin-like protein Costal2 (Cos2) Kinesin family member 7 (Kif7)

Ser/Thr Kinase Fused (Fu) Fu/STK36

PEST domain protein Suppressor of Fused
(Sufu)

Sufu
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[46–48]. The association between Ci/Gli and HIB/SPOP
can be disrupted by CK1-mediated phosphorylation at
multiple serine/threonine-rich degrons on Ci/Gli, which
are distinguished from those PKA-primed CK1 sites, as
a consequence, protecting CiA/GliA from premature
degradation [49]. Additionally, several other kinases, such
as atypical protein kinase C (aPKC), casein kinase 2
(CK2), dual-specificity tyrosine phosphorylation-regulated
kinases (DYRKs), were also implicated in the regulation of
Ci/Gli activity [50–53].
The cytoplasmic Cos2-Fu-Sufu complex serves as a

bridge between Smo and Ci/Gli to transduce Hh
signaling from cell surface to nucleus [54–56]. In
response to Hh signal, in Drosophila, Fu kinase phos-
phorylates Cos2 and Sufu proteins, very likely in a
direct manner, to trigger the dissociation of Cos2-Fu-
Sufu-Ci complex [55, 57–60], promoting Ci release from
the complex and its subsequent activation [57, 61]. Fu
itself is also subject to phosphorylation to obtain full acti-
vity, including autophosphorylation and its primed CK1
phosphorylation [54, 55, 57, 62, 63]. In mammals, Fu ho-
mologs have been suggested as two proteins STK36/Fu
and Ulk3. However, it is unlike that they function similarly
as Fu in phosphorylating Cos2 and Sufu, as mouse
STK36/Fu appears to be dispensable for embryonic deve-
lopment [64, 65] and Ulk3 phosphorylates Gli proteins in
vitro [66, 67]. Instead, an unknown kinase phosphorylates
vertebrate homologous protein of Cos2, kinesin superfam-
ily member 7 (Kif7) [68], while PKA and GSK3 control
mammalian Sufu phosphorylation [69].

The emerging study of phosphatase in Hh
pathway
In contrast to kinases, the participation of phosphatase
in Hh pathway and the underlying mechanistic details
are poorly understood. Recently, increasing evidence is
reported to imply an equally important role of the phos-
phatase to kinase for the modulation of Hh signaling.
According to the type of targeting phosphor-residue,
protein phosphatases are classified into three major
groups: tyrosine phosphatase, serine/threonine phos-
phatase, and dual-specificity phosphatase [70]. To date,
the majority of known phosphorylation events in Hh
pathway are taking place at serine or threonine residues
[7]. Correspondingly, protein serine/threonine phospha-
tases currently attract most attentions in the studies of
phosphatase function during Hh signal transduction.

Protein phosphatase 1
Protein phosphatase 1 (PP1) belongs to serine/threonine
phosphatase family, and together with protein phospha-
tase 2A (PP2A), accounts for more than 90% of protein
phosphatase activities in eukaryotes [71]. As such an
abundant phosphatase, it is not surprising that PP1 can

regulate Hh signal. Actually, the biochemical and genetic
studies in Drosophila cultured cells and wing imaginal
discs have systematically demonstrated that PP1 nega-
tively modulates Hh signaling activities through specific-
ally reverting PKA-mediated phosphorylation of Smo
protein [72]. The role of PP1 as a phosphatase regulator
for Hh pathway was also uncovered in a genome-wide in
vivo RNA interference (RNAi) screen searching for
kinases and phosphatases that regulate Wnt and/or Hh
signaling pathways [73].
Drosophila genome encodes four PP1 catalytic sub-

units (PP1c) by two subtypes of genes: PP1α and PP1β
[74, 75]. Three genes encoding PP1α isozymes are
named as Pp1-13C, Pp1-87B, and Pp1-96A, according to
their chromosomal locations. The fourth gene, flapwing
(flw), codes for PP1β subtype. Smo was detected to
interact with all four PP1cs in cultured cells, and indi-
vidually knocking down these PP1cs by RNAi induced
similar levels of Smo phosphorylation [72]. However, re-
garding specificity of each PP1c in regulating Hh signal
activities, Flw seems to act as a positive regulator of Hh
pathway, whereas three of PP1α isozymes were observed
to negatively modulate Hh signaling outcomes repre-
sented by Hh-responsive gene expressions [73]. Even
though the mechanism underlying these distinguished
effects is not clear, these functional differences between
PP1α and PP1β/Flw have been found in other contexts.
For examples, Flw, but not PP1α, binds to Drosophila
myosin phosphatase targeting subunit MYPT-75D,
functioning as a non-muscle myosin phosphatase to de-
phosphorylate the nonmuscle myosin regulatory light
chain Spaghetti Squash (Sqh) [76]. Furthermore, PP1α
does not rescue semi-lethality of flw mutants, and Flw
also does not rescue PP1α double mutants, suggesting
non-redundant functions of PP1α and PP1β/Flw during
development [77].

Protein phosphatase 2A
PP2A is a highly and broadly expressed phosphatase in
eukaryotes with the involvements in a wide range of
biological processes [6]. In special, PP2A was thought to
act as a tumor suppressor, which was initially indicated
by the discovery of its inhibitor okadaic acid as a potent
tumor promoter, later supported by the finding of its
interaction with oncoproteins [78, 79]. Thus far, PP2A is
the most frequently studied seine/threonine phosphatase
in Hh pathway. PP2A was initially linked to Hh signaling
in mammalian cultured cells [80]. In this study, inhibi-
ting PP2A activity by okadaic acid treatment blocks the
expression of COUP-TFII, a Gli-independent Shh re-
sponsive target. Consistently, PP2A catalytic subunit
overexpression mimics Shh stimulation to induce this
target expression. In Drosophila, PP2A also appears to
be required in Hh pathway. Microtubule star (mts),
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which encodes the unique PP2A catalytic subunit in
flies, was identified as a gene required for maximal Hh
signaling activation from an in vitro RNAi screen in cl-8
cultured cells [81]. In this study, knocking-down mts re-
sulted in the reduction of Hh-induced reporter activity.
Consistently, in a deficiency screen for genomic regions
that enhance or suppress a smo partial loss-of-function
wing vein phenotype, mts was found to positively regu-
late Hh signaling due to the observation that mts loss-
of-function mildly enhanced the smo knock-down
(RNAi) phenotype [82]. In a more recent genome-wide
in vivo RNAi screen for the phosphor-regulators of mul-
tiple signaling pathways, the involvement of PP2A in Hh
signaling pathway was indicated again [73].
The clue for clarifying PP2A targets in Hh pathway

has been obtained from a mts overexpression study [81],
in which overexpressing mts doubled Hh-responsive
reporter activity in Hh-uninduced cells but reduced the
reporter activity in half in Hh-stimulated cells. Interes-
tingly, PKA showed similar effects on Hh reporter acti-
vity as that of mts, suggesting a possibility that PKA and
PP2A act on similar substrates. As described above, both
Smo and Ci have been characterized as the substrates of
PKA [7]. PP2A may similarly modulate both Smo and Ci
dephosphorylations. Indeed, more intensive studies have
demonstrated that PP2A plays multiple roles in dictating
signaling output by regulating Smo, Ci/Gli, and even
Cos2/Kif7 [72, 83–86].

PP2A regulates Ci/Gli with elusive molecular mechanisms
As the transcription factor of Hh pathway, Ci/Gli activity
is extremely critical for Hh signaling outcomes. PP2A
has been implicated to affect almost every steps of Ci/
Gli activation, including Ci/Gli protein phosphorylation,
proteolytic processing, nuclear localization, transcrip-
tional activity and degradation, in an either direct or
indirect manner. In Drosophila, PP2A promotes Ci de-
phosphorylation and attenuates Ci cleavage, therefore,
positively regulating Hh signaling outputs [83], which is
consistent with the results from previous screen studies
[81, 82]. In vertebrates, PP2A likely regulates Gli in a
different way. In a variety of mammalian cancer cell lines
with self-activated Shh signaling, increasing PP2A acti-
vity led to cytosolic retention of full-length Gli3 and its
decreased transcription activity, while inhibition of PP2A
enhanced Gli3 nuclear accumulation and its transcrip-
tional activity [85, 86]. This negative regulation of PP2A in
Gli3 transcriptional activity conflicts with the knowledge
that Gli3 undergoes phosphorylation-dependent cleavage
to produce a transcriptional repressor of target genes,
strongly arguing against the direct mode of PP2A regula-
tion in Gli3 localization and activity, and suggesting a
possible involvement of other PP2A-modified factors in
Hh pathway. As supporting evidence, PP2A was found to

indirectly down-regulate the stability of Gli proteins by
controlling the dephosphorylation of Dzip1 [87], a cilio-
genesis regulator known in zebrafish [88].

PP2A dephosphorylates Smo as a checkpoint factor to
restrict Hh-induced tissue overgrowth
In addition to Ci/Gli, PP2A also modulates Smo
phosphorylation and activity. As known, Smo is sub-
ject to sequential phosphorylations mediated by PKA
and then CK1 in Drosophila in response to graded
Hh stimulation [7]. This CK1-mediated hyperpho-
sphorylation of Smo requires a high threshold of Hh
signal, promotes Smo trafficking to plasma mem-
brane, and confers Smo maximal activity to activate
downstream signal transduction. PP2A was demon-
strated to specifically counteract with CK1 to dephos-
phorylate Smo, consequently, blocking Hh-induced
Smo membrane accumulation and target gene expres-
sions [72]. Theoretically, PP2A is capable of serving
as a checkpoint factor to restrict the inappropriate
signal activities induced by overdosed Hh signal.
However, this PP2A action on Smo dephosphorylation
in Drosophila might not be conserved in vertebrate
system, because these PKA-primed CK1 consensus
sites are not found on vertebrate Smo. Consistently,
okadaic acid treatment of MEFs was not able to alter
the Hh-dependent localization of Smo in cilia [84].
Instead, another Hh pathway component Cos2/Kif7
was discovered as a direct PP2A substrate in vertebrates.

PP2A dephosphorylates Kif7 as a positive effector on
vertebrate Hh signaling
PP2A inhibitor okadaic acid inhibits Kif7 trafficking in
cilia and blocks Hh signaling [84]. Conserved with Cos2,
the phosphorylation of Kif7 directs its subcellular
localization and the transcriptional output of Hh path-
way. However, unlike Cos2, Kif7 is phosphorylated under
basal conditions and is dephosphorylated in response to
Hh signaling [84]. Mass-spectrum analysis has identified
three phosphorylation sites on mouse Kif7, of which
Ser1337 is a most critical site for Kif7 cilia localization
and Hh signaling activation [84]. Indeed, PP2A exactly
dephosphorylates this residue of Ser1337 at mouse Kif7
in the presence of Hh signal, triggering Kif7 localization
to the tips of primary cilia and inducing the Gli-
mediated transcriptional output of Hh signaling [84].
However, it remains unclear whether PP2A regulates
Cos2 in fly. In addition, the kinase responsible for Kif7
phosphorylation remains to be uncovered. Although
Cos2 phosphorylation is Fu-dependent in Drosophila,
mouse Fu appears to play no role in Kif7 phosphoryl-
ation [60, 64].
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PP2A substrate selection is controlled by its distinct
regulatory subunits
The existence of multiple PP2A targets in Hh pathway
raised an important question of how PP2A selects its
substrate. The character of PP2A functioning as a
heterotrimeric complex might be the key to answer this
question. Protein phosphatase counteracts kinase to
modulate the phosphorylation status of substrate pro-
tein. In mammals, there are around 400 serine/threonine
kinases, but intriguingly, there are only about 40 protein
serine/threonine phosphatases [71, 89]. Such efficient
employment of protein serine/threonine phosphatases in
counteracting kinases is achieved by forming numerous
multimeric holoenzymes with other interacting partners,
each with its own substrates and mode of regulation.
This concept of holoenzyme has been well illustrated for
PP2A [71]. PP2A holoenzyme is a heterotrimeric com-
plex, composed of a scaffolding subunit, a regulatory
subunit and a catalytic subunit, of which the number of
regulatory subunits is much higher than that of scaffol-
ding or catalytic subunit (Fig. 2 a and b) [90]. Through
the combinatorial association of multiple subunits, and
with the existence of alternative splicing, PP2A achieves
a large diversity of holoenzyme composition [91]. The
crystal structure analysis of PP2A heterotrimeric holoen-
zyme has revealed that highly acidic concave side of
regulatory subunit, towards the active sites of catalytic
subunit, outlines a docking pocket to recruit substrate
proteins [92]. Different regulatory subunit possesses
distinguished charged concave surface, allowing dis-
tinct substrate proteins fitting into the docking region
(Fig. 2a). Therefore, the regulatory subunit of a PP2A
trimeric complex confers the substrate specificity of
PP2A holoenzyme.

As PP2A seems to target more than one component in
Hh pathway, thereby, the roles of PP2A regulatory sub-
units in recognizing distinct substrates in Hh pathway
were explored. In mammals, three major PP2A regula-
tory subunit families, B/B55, B′/B56, and B″/PR72, have
been classified (Fig. 2b), of which B56 family comprises
the largest and most conserved regulatory subunit family
[93]. Five B56 family members have been identified in
mammals, including α, β, γ, δ, and ε. Depletion of B56ε
in Xenopus embryos reduced the Shh-induced target
gene ptc-1 expression, indicating that B56ε is required
for Hh signaling activity [94]. More analysis showed that
Hh pathway upstream of Gli remains intact in B56ε-
depleted embryos, further demonstrating that B56ε likely
regulates Hh pathway at the level of Gli during Xenopus
development [94].
In Drosophila, four regulatory subunits are encoded:

Twins (Tws) represents B55 family, Widerborst (Wdb)
and Well-rounded (Wrd) belong to B56 family, and
CG4733 is the member of PR72 family. According to the
evolutional analysis, B56 family members can be further
divided into two clades: Wdb/B56αβε and Wrd/B56γδ
[91]. In consistent with B56ε functions in Xenopus, Wdb
was first identified as a phosphor-regulator of Hh
pathway from a genome-wide RNAi screen [81], then
Wdb-containing PP2A was found to prevent Ci phos-
phorylation and proteolytic processing [83]. However,
Wdb failed to be immunoprecipitated with Ci and did
not affect Ci cellular localization [72]. Instead, Tws from
B55 family, which has previously been associated with
Wnt/Wingless signaling [95], is able to interact with Ci
and promote Ci nuclear localization [72], suggesting that
Tws and Wdb may play distinct roles to modulate Ci
phosphorylation and localization. In terms of Smo

Fig. 2 Subunit composition of PP2A holoenzyme. a PP2A holoenzyme is a heterotrimeric complex, consisting of three subunits: a scaffolding
subunit A, a regulatory subunit B, and a catalytic subunit C, in which B subunit confers the specificity of substrates, by providing distinguished
docking surfaces (represented by B1 and B2) towards the active sites (indicated by red asterisks) of C subunit, to allow the binding of specific
substrate proteins (S1 and S2, respectively). b Drosophila genome encodes a single A subunit and a single C subunit, but four B subunits. In
mammals, there are two A subunits, two C subunits, and more than 20 B subunits. The B subunits are classified into at least three families: B55,
B56, and PR72, of which B56 family includes the largest number of members, and is further divided into two subgroups: Wdb/α,β,ε and Wrd/γ,δ.
The diversity of B subunit contributes to the selection of various PP2A substrates. Tws, Twins; Wdb, Widerborst; Wrd, Well-rounded
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dephosphorylation, Wdb-containing PP2A holoenzyme
counteracts with CK1 to control Smo hyperphosphoryla-
tion status, by which Wdb negatively modulates Smo
cell surface accumulation and Hh signaling activities
[72]. And this PP2A regulation on Smo is specifically
controlled by Wdb, as manipulating Tws, Wrd, or
CG4733 expression failed to alter Smo cellular
localization and phosphorylation [72]. Therefore, PP2A
regulatory subunits exhibit specific preferences in the
formation of distinct PP2A holoenzyme to dephosphory-
late Smo or Ci in Drosophila.

Protein phosphatase 4
In addition to PP2A, another known phosphatase regulat-
ing Smo is protein phosphatase 4 (PP4). Knocking down
pp4 by RNAi was able to promote Smo phosphorylation,
but failed to induce Smo cell surface accumulation [83],
suggesting that Smo phosphorylation status mediated by
PP4 is not sufficient to alter Smo subcellular localization.
Interestingly, Cos2 is required for PP4 modulation on
Smo [83]. As the direct interaction between PP4 and Cos2
was found, Cos2 may serve as a scaffold to associate PP4
and Smo, allowing the inhibition of Smo phosphorylation
by PP4. Later, the involvement of PP4 in Hh pathway was
reconfirmed in an in vivo screen [73]. However, these
studies did not exclude a possibility that PP4 directly
functions on Cos2, therefore indirectly modulate Smo
phosphorylation. Further investigation for the bona fide
target of PP4 in Hh pathway is expected.

TAP42/ALPHA4
Alpha4 (Tap42 in yeast) is an atypical regulatory subunit,
forming a complex with the catalytic subunit of PP2A,
PP4, or protein phosphatase 6 (PP6). These three
phosphatases are evolutionarily related, and together
composing a protein serine/threonine phosphatase type
2A family [96–98]. The interaction between Alpha4 and
each phosphatase catalytic subunit is independent of their
canonical scaffolding and regulatory subunits [96, 97].
Alpha4 plays an important role in regulating the assembly
and maintenance of PP2A phosphatase complexes, and its
deletion leads to progressive loss of all PP2A, PP4 and
PP6 phosphatase complexes [99]. RNAi-mediated silen-
cing of alpha4 altered the expressions of Hh signal related
factors in Drosophila wing imaginal discs. The alpha4
RNAi-induced effects were resulted from the loss of
regulation of PP2A family members, as enforced expres-
sion of wild type alpha4, but not a phosphatase binding
defective alpha4 mutant, rescued the defective wing phe-
notypes [100], suggesting an essential role of Alpha4-
regulated PP2A family phosphatase in Hh signal and wing
development.

Wild-type P53-induced phosphatase 1
Wild-type p53-induced phosphatase 1 (WIP1 or PPM1D)
is a nuclear serine/threonine phosphatase expressed at
low levels in most normal tissues [101]. In recent years,
WIP1 has emerged as an important player in tumorigen-
esis [102]. The initial link between WIP1 and Hh signaling
was established from a tumorigenesis study [103], in
which ectopic expression of WIP1 enhances tumor forma-
tion in a Shh-dependent mouse model of medulloblas-
toma, one of most common tumors caused by improper
Hh activity. A later study further elucidated the possible
mechanism of WIP1 involving in Hh signaling [104]. Be-
sides p53 as the known WIP1 target, Gli1 was also subject
to the regulation from this phosphatase. WIP1 positively
modulates Hh signaling by enhancing Gli1 transcriptional
activity, nuclear localization, and protein stability. This
modulation of Gli1 depends on WIP1 phosphatase activity
and is p53-independent. It still remains mysterious
whether WIP1 dephosphorylates Gli1 directly or indirectly
through a third party.

Lipid phosphatase
In addition to proteins, lipids are also subject to the
regulation by phosphatase. Lipids, such as phosphoinosi-
tols, are major constitutes of plasma membrane and
cellular organelle membrane, such as ciliary membrane.
Given the importance of membranes in either Droso-
phila Hh pathway or vertebrate ciliary Hh pathway, it is
worthy to note recent studies about the requirement of
lipid phosphatases for normal Hh signal transduction
[105, 106]. Primary cilium is a unique organelle for
vertebrate Hh signal interpretation. Ciliary membrane
contains a particular phosphoinositide, PI(4)P, whereas a
different phosphoinositide, PI(4,5)P2, is located at the
membrane of the ciliary base [106]. The level of
PI(4,5)P2 at ciliary membrane is restricted by Inpp5e, a
ciliary phosphoinositide 5-phosphatase, who selectively
removes the phosphate from position d-5 of the inositol
ring of phosphoinositides and inositol phosphates [107,
108]. In the inpp5e-deficient cilium, PI(4,5)P2 level is el-
evated and Hh signaling is disrupted [106]. In addition
to defining lipid distribution, Inpp5e limits the ciliary
localization of a PI(4,5)P2-binding protein, Tubby-like
protein 3 (Tulp3), and its interacting proteins, intrafla-
gellar transport complex A (IFT-A) and G-protein-
coupled receptor Gpr161, all of which are negative
regulators of Hh signaling [106, 109–113]. In Droso-
phila, although most cells are lacking cilium structure,
PI(4)P is also critical for Hh signal transduction [105].
Hh-induced Smo release from Ptc inhibition and subse-
quent activation are dependent on the levels of PI(4)P.
Correspondingly, another lipid phosphatase Suppressor
of actin-1 (Sac1), which dephosphorylate PI(4)P, geneti-
cally functions downstream of Ptc in the regulation of
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Smo membrane localization and Hh pathway activation.
Loss of Sac1 phosphatase results in hh gain-of-function
phenotypes [105]. Together, different from the protein
phosphatases mentioned above, lipid phosphatases, such
as Inpp5e and Sac1, generate a specialized environment
by controlling the protein/lipid composition at ciliary or
plasma membrane, to facilitate Hh signal transduction.

Phosphatase and HH morphogenetic response
As a morphogen, Hh protein distributes over cells with a
concentration gradient, which induces the different
thresholds of signal cellular response in signal receiving
cells, and eventually patterns the development of re-
spective tissue or organs. During Hh signal transduction,
phosphorylation has been implied to act as an important
mechanism to not only fine-tune every component acti-
vity, but also interpret Hh morphogen gradient into
graded downstream outcomes (Fig. 3).
The progressive Smo phosphorylations controlled by

PKA-PP1 and CK1-PP2A have been illustrated to interpret
morphogenic Hh signals into graded signaling outputs,
which usually is represented by distinct thresholds of Hh-
responsive gene expressions (Fig. 3) [72]. In responding to
increasing Hh gradient, Smo obtains PKA-mediated inter-
mediated level of phosphorylation and then CK1-regulated
hyperphosphorylation [23]. The mutagenesis analyses have
revealed that PKA-phosphorylated Smo species are

sufficient to activate low-to-intermediate, but not high,
threshold of Hh-responsive gene expressions, whereas
PKA-primed CK1 phosphorylation is able to stabilize Smo
at plasma membrane and induce the expression of high-
threshold Hh target genes [23, 24, 72]. Correspondingly, by
antagonizing kinase activities, PP1 or PP2A is capable of
regulating the status of Smo phosphorylation and altering
the expressions of Hh target genes [72]. Inhibiting the acti-
vities of all four PP1cs by nuclear inhibitor of protein phos-
phatase 1 (Nipp1), an endogenous inhibitor of PP1, is able
to enrich PKA-phosphorylated Smo species, and induce the
expressions of Ci and dpp, which are responding to low-to-
intermediate Hh signals. Repression of PP2A activity is able
to enhance Smo hyperphosphorylation by CK1 and activate
the expression of ptc, a high-threshold Hh target gene.
In Hh pathway, Smo does not physically interact with

either ligand Hh or receptor Ptc, therefore, the mechan-
ism of how Smo obtains an order from Hh to undergo
phosphorylation is not clearly characterized. Yavari et al.
have proposed a model that Hh-Ptc binding alters the
levels of PI4P at cell membrane to in turn regulate Smo
plasma membrane localization and activation [105]. Even
though, the relationship between membrane lipids and
Smo phosphorylation is still elusive. Alternatively, it is
possible that Hh regulates Smo phosphorylations through
altering the activities of Smo-related kinases or phospha-
tases. Actually, upon Hh stimulation, the activities of PKA

Fig. 3 Multiple kinases-phosphatases mediated progressive Smo phosphorylations interpret morphogenic Hh signals in signal-receiving cells. In
response to Hh concentration gradient, Drosophila Smo exhibits graded phosphorylation status, which correspondingly activates the expressions
of a series of target genes, such as dpp and ptc, responding to low-to-intermediate threshold, or high threshold Hh signals, respectively. The
transcription effector Ci is switched from a repressor form CiR to an activator form CiA, triggering the expression of Hh target genes. During these
progressive Smo phosphorylations, PKA and CK1 sequentially phosphorylate Smo, which promotes Smo accumulation on plasma membrane and
facilitates Smo further phosphorylations by Gprk2 and Gish, two kinases preferring the distribution near plasma membrane, to achieve maximal
activation of Smo. It has been known that PP1 and PP2A respectively counteract with PKA and CK1 to modulate Smo phosphorylation status.
However, the phosphatase against Gprk2 or Gish has not been identified yet
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or CK1 were not obviously changed [72], making it likely
that the regulation of PP1 or PP2A activities by Hh could
be a major mechanism for Hh-induced Smo phosphoryl-
ation. It was observed a long time ago that okadaic acid-
sensitive-phosphatase activity is induced by Shh treatment
in cultured mammalian cells [80]. However, no investiga-
tion followed up to further dissect this observation and its
underlying molecular mechanism. It will be of interest to
delineate the Hh regulation in the expressions or activities
of these related phosphatases in future. Regardless, the
phosphatase study in Hh signaling has provided a new
insight to fully understand the mechanisms of how the
morphogenic Hh signals are transduced in cells.

Challenges and opportunities in phosphatase
study
Although the current phosphatase study in Hh path-
way has achieved remarkable progress (Fig. 4 a and
b), it still falls far behind the kinase study. Up to
now, the phosphatases affecting Cos2, Fu, or Sufu,
remain mysterious. A few phosphatases have been
identified to regulate Smo, Ci/Gli, and Kif7. However,
the molecular basis of these phosphatase actions, in-
cluding the specific targeting phosphor-residues on
substrates, is largely unclear. The less progress on
phosphatase study mainly is resulted from the diffi-
culties apparently existing in this field.

Fig. 4 Summary of major kinases and phosphatases involved in Hh pathway. a In Drosophila, Hh induces the phosphorylations of Smo, Cos2, Fu,
and Sufu proteins, but dephosphorylation of protein Ci, which activate the expressions of target genes. b Similarly, vertebrate Smo and Sufu
proteins undergo phosphorylations, and Gli proteins undergo dephosphorylation upon HH stimulation. However, different from Cos2 in
Drosophila, Kif7 is phosphorylated when HH signal is off, but dephosphorylated when HH signal is on. The major key kinases and phosphatases
controlling these phosphorylation events are shown within blue boxes or orange boxes, respectively. Phosphorylated proteins are highlighted in
blue. The signal transduction cascade under Hh condition is indicated with gray background
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First, it is a big challenge to correlate a phosphatase with
its substrates if without any clues from experimental stu-
dies. Different from kinases that recognize their substrates
simply depending on certain specific consensus sequence,
a suitable binding of a phosphatase with its substrate relies
on many aspects of these two proteins, such as their three
dimension structures, conformations, and even the
charges of residues. So it is nearly impossible currently to
predict a substrate for a particular phosphatase, or search
a responsible phosphatase for a known phosphor-protein,
solely based on protein sequences. Second, many phos-
phatases execute functions only by forming complexes
with one or more regulatory subunits. The function study
for this type of phosphatase complex requires more com-
prehensive analysis for all components. Due to the high
diversity of regulatory subunits, especially in vertebrates, a
phosphatase may obtain various functions by binding with
distinct regulatory subunits. But on the other side, the ex-
istence of multiple regulatory subunits also increases the
complexity to delineate the function of a particular phos-
phatase, such as the occurrence of functional redundancy
between different regulatory subunits.
To overcome these obstacles, many attempts have

been undertaken. For example, much effort has been
made to define a simple principle for the substrate
recognition of PP1 or PP2A. A PP1-docking motif
with well-defined consensus sequence RVxF was
found to exist in about 70% of all PP1-interacting
proteins including PP1 substrates [114]. For PP2A
substrate recognition, a conserved LxxIxE motif was
reported recently to provide a binding specificity to a
particular PP2A phosphatase complex containing B56
regulatory subunit [115]. Although these motifs
cannot fully represent the mechanisms to explain the
substrate selection of PP1 or PP2A, it is a good star-
ting point to search for PP1 or PP2A substrates. In
addition, to bypass these sequence analysis, an organ-
based genetic screen with a suitable readout is
becoming a reliable way to search for the involved
phosphatase under certain circumstances. For in-
stances, several novel phosphatase regulators of Hh
signaling, such as PPV and PpD3, have been identified
in a screen through observing the expression pattern
of Hh-responsive genes in Drosophila larval wing
imaginal discs [73]. However, due to the way of
phosphatase functioning as a complex and functional
redundancy between different regulatory subunits or
isoforms, it is expected that some phosphatase effec-
tors could be missed from this kind of screens. Alter-
natively, according to the character of a protein
serine/threonine phosphatase physically interacting
with its substrate, utilizing biochemistry methods to
precipitate the interacting proteins with a particular
phosphatase could be another feasible approach to

search for substrates of phosphatases [116]. With the
improving techniques in proteomics and phosphatomics,
such as phosphor-protein enrichment and advanced
tandem mass spectrometry, identifying substrates for
phosphatases through these biochemistry approaches
appears to be more achievable now than before.

Conclusions
During Hh signal transduction cascade, a broader phos-
phorylation spectrum has been outlined. As one of two
key executors in phosphorylation process, the phosphatase
has been increasingly studied in Hh pathway, and remark-
able progress has been achieved in recent years. Many
phosphatases have been identified in regulating Hh signal
activities. Even though, the phosphatase study is still far
away from the edge of completion. Many of known phos-
phorylation events in Hh pathway are lacking information
of the responsible phosphatase. On the other side, the mo-
lecular mechanism by which the identified phosphatase
regulators affect Hh signaling has not been clearly
characterized. Fortunately, with the increasing emphasis
and improving techniques for phosphatase studies, a more
thorough understanding of the phosphatase functions in
Hh pathway is promising in the near future.
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