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Abstract

Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration,
transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoske-
leton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies,
playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct
modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells
which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell
mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular pro-
teolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia for-
mation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent
from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes
of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of
plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus
on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal
control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addi-
tion we analyse the role of these GTPases in cancer progression and metastatic dissemination.

Review
Rho and Rac GTPases
Rho proteins belong to the Ras superfamily. They are
small (21-25 kDa) molecules that share structural homo-
logy and become activated only when bound to GTP.
The best-characterized molecules are Rho, which con-
trols the stress fibers and focal adhesion formation, and
Rac and Cdc42, which regulate membrane ruffling, and
filopodium formation, respectively. A structural feature
that distinguishes the Rho proteins from other small
GTPases is the so-called Rho insert domain located
between a b strand and an a helix within the small
GTPase domain [1-3]. Typically Rho proteins are 190-
250 residues long and consist only of the GTPase domain
and short terminal C-terminal extensions. Within their
GTPase domains, they share approximately 30% amino
acid identity with the Ras proteins and 40-95% identity

within the family. All members contain the sequence
motifs characteristic of all GTP-binding proteins, bind to
GDP and GTP with high affinity. In addition, the major-
ity of members undergo C-terminal post-translational
modification by isoprenoid lipids. Together with other
C-terminal modifications or sequences, isoprenoid addi-
tion facilitates their subcellular location and association
with specific membranes or organelles. These lipid modi-
fications are mainly palmitoylation or prenylations, being
farnesylation and geranyl-geranylation the most frequent
post-translation modifications [4].
Rho GTPases work as sensitive molecular switches

existing either in an inactive, GDP-bound form or an
active GTP-bound form. They are endowed with GTP
hydrolytic activity, mainly involved in cytoskeleton rear-
rangements and cell motility, but also involved in cell
proliferation, transformation and differentiation [2].
Among other members, we will focus our attention on
the Rac and Rho subfamilies, as they are the main effec-
tors of cell motility.
The exchange of GDP to GTP and thus the activation

of Rho GTPases is catalyzed by guanine nucleotide
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exchange factors (GEFs), which act downstream of
numerous growth factor receptors, integrins, cytokine
receptors, and cadherins. Rho GTPases are key integrat-
ing molecules from different extracellular signals, as
they can be activated by different GEFs. In turn, GTP-
bound active GTPases can interact with a plethora of
different effectors which mediate the different cellular
functions of this family of proteins. Rho GTPase effec-
tors are a large group of proteins and include actin
nucleation promoting molecules, adaptors, as well as
kinases. Two factors concur to determine specific Rho
GTPase function: tissue specificity of GTPase effectors
and distinct intracellular localizations of closely related
Rho GTPases, due to different lipid modifications [1].
The GEF family is really large, consisting of over 70 pro-
teins mainly belonging to the Dbl or the Dock families
[5,6]. Lipid modification of Rho and Rac GTPases are
also strategic for subcellular compartmentalization,
allowing interaction with membrane-localised GEFs
upon masking of isoprenoids by GDI. The hydrolysis of
GTP and contact with GAPs allows a new association of
the GTPases with GDI and return to the cytosol [7]. In
addition, Rho GTPases can also be regulated by phos-
phorylation. RhoA has been reported to be phosphory-
lated by protein kinase A and G (PKA and PKG) at
serine at position 188, without any modification of its
interaction with GEFs, but increasing its interaction
with GDI and leading to extraction of RhoA from plas-
mamembrane [8].
Inactivation of Rho GTPases is due to an intrinsic

GTPase activity, which hydrolyses GTP to GDP. How-
ever, this activity is very weak and needs to be up-regu-
lated by GTPase activating enzymes (GAPs). Of note,
Rnd1-3 [9] and RhoH [10,11] are not regulated via
GAPs, due to their inability to hydrolyse GTP, and are
therefore regulated through gene expression and protein
degradation. An additional negative control is achieved
through Rho guanine nucleotide dissociation inhibitors
(GDIs). They bind Rho GTPases and prevent their acti-
vation by means of blocking interaction of the GTP-
bound form with effectors, sequestering GDP-bound
Rho proteins in the cytoplasm away from the GDP-GTP
cycle, as well as by changing membrane compartment to
GTPases [12]. Beside the GF family, the GAP group is
also huge: more or less 100 members have been found
in the human genome, but their regulation are even less
clear than those of the GEFs. Indeed, external to their
GEF or GAP domains, these proteins strongly diverge in
structure and secondary functions [6,13].
The Rac-related subfamily includes Rac1 (and its

splice variant Rac1b), Rac2 and Rac3 [4]. Seevaral Rac-
related proteins, sharing more than 80% identity, they
stimulate the formation of lamellipodia and membrane
ruffles, presumably through interaction with the WAVE

complex [14]. The splice variant Rac1b contains an
additional C-terminal 19-residue insert and is constitu-
tively active due to an increased intrinsic guanine
nucleotide exchange rate, decreased intrinsic GTPase
activity, its inability to interact with RhoGDI and
enhanced association with the plasma membrane
[15,16]. In addition, Rac1 can also be regulated by phos-
phorylation by Akt on Ser71, thereby leading to inhibit
the binding of GTP but not Rac1 GTPase activity [17].
Rac1 is ubiquitously expressed, whereas Rac2 is

expressed only in hematopoietic cells, where it seems to
have specialized functions [18]. Rac2 inactivation has
been correlated with several neutrophilic, phagocytic
and lymphocytic defects [19]. Indeed, Rac2 is mainly
responsible for activation of NADPH oxidase and conse-
quent generation of reactive oxygen species (ROS) in
hematopoietic cells [20]. Finally Rac3, highly expressed
in brain and upregulated upon serum stimulation of
fibroblasts [21], is strongly localized to the membranes
where it appears to be hyperactive [22].
Animals have 3 Rho isoforms, RhoA, RhoB, and RhoC,

sharing 85% amino acid sequence identity [1,6]. Despite
their similarity, both modulators (GEFs and GAPs) and
downstream effectors show favoured interaction with
single Rho isoforms, and the three proteins play differ-
ential roles in cells. RhoA and RhoC play key roles in
the regulation of actomyosin contractility and in cell
locomotion, while RhoB, primarily located in endo-
somes, has been shown to regulate intracellular traffick-
ing and cell survival [23]. Mostly, the functional
differences are a consequence of divergence in their
C-terminal 15 amino acids, where the highest level of
difference is found.

Molecular mechanism of cell migration
Cell migration in tridimensional extracellular matrix
(ECM) is a multistep process involving changes in the
cytoskeleton, cell-substrate adhesions and the extracellu-
lar matrix components. Cell migration is generally
initiated in response to extracellular stimuli, which can
be diffusible factors, signals on neighboring cells, and/or
signals from the extracellular matrix. The idea that Rho
family GTPases could regulate cell migration derives
from observations that they mediate the formation of
specific actin containing structures [24,25]. Furthermore,
Rho proteins regulate several other processes relevant to
cell migration, including cell-substrate adhesion, cell-cell
adhesion, protein secretion, vesicle trafficking and
transcription.
Cell migration in three-dimensional ECM can be sche-

matized into five separate steps [26] (figure 1):

1. lamellipodium extension at the leading edge
2. formation of new focal adhesions complexes
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3. secretion of surface protease to ECM contacts and
focalized proteolysis
4. cell body contraction by actomyosin complexes
5. tail detachment

Lamellipodium extension at the leading edge involves
actin polymerization, and it is known that lamellipodia
consist of branched or unbranced filament networks
formed through the actin-nucleating activity of the
actin-related proteins 2/3 (Arp2/3) protein complex
[27,28]. Rac stimulates new actin polymerization, acting
on Arp2/3 complex, which binds to a family of proteins
called nucleating promoting factors (for detailed descrip-
tion of actin nucleation factors refer to [29,30]) and
initiates the formation of new actin filaments on the
sides of existing filaments to form a branching actin net-
work [27]. The Arp2/3 complex is activated by Rac
through its target insulin receptor tyrosine kinase sub-
strate p53 (IRSp53) [31]. Rac interacts with IRSp53,
which in turn interacts through an Src-homologous
domain 3 (SH3) domain with a member of the WASP
family, which then binds to and activates the Arp2/3
complex. Rac is required for lamellipodium extension
induced by growth factors, cytokines and extracellular
matrix components [32]. Rac activation by both tyrosine
kinases and G-protein-coupled receptors is dependent
on phosphoinositol3-kinase (PI3K) activity, and inhibi-
tors of PI3K block Rac activation [33]. During

lamellipodia extension phosphoinositol phosphates
(PIPs) also bind and activate GEFs that regulate the
activity of Rac that bind the Arp2/3 complex[34].
A number of myosins, the main motor protein in eukar-

yotic non-muscle cells, have been implicated in cell migra-
tion [35]. Myosin light chain (MLC) phosphorylation is
enhanced in the lamellipodial region of cells [36], which
suggests a role for myosins in lamellipodium extension.
Rac can affect the phosphorylation of both myosin heavy
chain (MHC) [37] and MLC via activation of its down-
stream kinase p21 activated-kinase (PAK) [38].
Formation of new focal adhesions complexes is loca-

lized in the lamellipodia of most migrating cells. Upon
the attachment of the extending lamellipodium to the
extracellular matrix, integrins come into contact with
ECM ligands and cluster in the cell membrane interact-
ing with the focal adhesion kinase (FAK), a-actinin and
talin. All these proteins can bind adaptor proteins
through SH2, SH3 or proline rich domains to recruit
actin binding proteins (vinculin, paxillin and a-actinin)
as well as regulatory molecules PI3K to focal complexes
[39,40]. Rac is required for focal complex assembly [41]
and cell adhesion to the extracellular matrix itself acti-
vates Rac [42].
Secretion of surface protease to ECM contacts and

focalized proteolysis is crucial for cells to migrate in a
three-dimensional matrix and, even on a two-dimen-
sional matrix, protease production can be important for

Figure 1 Cell migration in 3 D matrix. See text for detailed explanation of motility steps.
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migration [43]. There are some indications that Rho
GTPases could play a role in regulating the secretion
and/or activation of secreted proteases. For example,
Rac is required for shear stress-induced matrix metallo-
proteinase 9 (MMP9) expression in chondrocytes [44],
and activated Rac can induce expression of the MMP1
in fibroblasts [45]. Constitutive expression of activated
Rac induces activation of Jun N-terminal kinase (JNK),
which phosphorylates and activates the transcription
factor Jun. Jun is a component of the activator protein 1
(AP-1) transcription factor complex and regulates tran-
scription of many genes, including MMP genes [46].
Furthermore, in HT1080 cells, Rac1 mediates MMP2
activation and membrane type matrix metalloproteinase
(MT1-MMP) expression/processing during the encoun-
ter between invading tumor cells and type I collagen-
rich stroma, thereby facilitating collagenolysis and cell
invasion [47].
Cell body contraction is dependent on actomyosin

contractility. The contraction of actin filaments is pro-
vided by myosin II. Stress-fiber assembly and contrac-
tion, which are controlled by myosin II, are
predominantly induced by the small G-protein Rho and
its important downstream effector, the Rho-associated
serine/threonine kinase (ROCK). Rho acts via ROCKs to
affect MLC phosphorylation, both by inhibiting MLC
phosphatase and by phosphorylating MLC [48]. It is
likely that ROCKs and MLCK act in concert to regulate
different aspects of cell contractility, because ROCK
appears to be required for MLC phosphorylation asso-
ciated with actin filaments in the cell body, whereas
MLCK is required at the cell periphery [49]. This allows
the cell to separately control cortical actin dynamics
from contractions in inner regions.
Tail detachment occurs when cell-substrate linkages is

preferentially disrupt in the back of the cell, whereas the
leading edge remains attached to the ECM and further
elongates [50]. At the trailing edge, focal complex dis-
sassembly occurs through several mechanisms depen-
dent on the type of cell and strength of adhesion to the
extracellular matrix [51]. In slowly moving cells tail
detachment appears to depend on the action of the pro-
tease calpain, which cleaves focal complex components
like talin and cytoplasmic tail of b1 and b3 integrins at
the rear of cells [52]. A reduction in Rho activity could
inhibit tail detachment, through decreased actomyosin
contractility [53].

Diversity of tumor invasion mechanisms
A combination of in vivo imaging and 3 D in vitro mod-
els have shown that cells could move using different
motility styles. Indeed cells can move as individual cells
or in solid multicellular component. Single-cell migra-
tion includes mesenchymal and amoeboid migration

strategies, whereas collective migration is referred to
multicellular strands, sheets, cluster and cohorts. Differ-
ences in extracellular protease activities, integrin-
mediated cell-matrix adhesion, cadherin-mediated cell-
cell adhesion, cell polarity and cytoskeletal arrangement
define the type of cell migration and invasion.

Mesenchymal motility
Mesenchymal motility is characterised by an elongated,
fibroblast-like, cell morphology with established cell-
polarity and is dependent, upon proteolysis, to the
degradation of the ECM [54,55]. In this kind of motility,
cell speed is relatively slow (0.1-1 μm/min). Upon sev-
eral stimuli, phosphatidylinositol (3,4,5)-triphosphate
(PtdIns(3,4,5) P3) is generated at the leading edge of the
cell and leads to cell polarization through activation of
the small GTPase Rac1, which in turn organizes actin
polymerization and lamellipodium formation [56,57].
Activation of cell division control protein 42 homolog
(Cdc42) and the recruitment of adaptor proteins can
also promote actin polymerisation. The directionality of
cell movement is maintained by Cdc42, which coordi-
nates actin polymerisation at the front of the cell with
microtubule attachment and alignment [57,58].
Together, these events lead to the formation of an
actin-rich protrusion. After the extension of the protru-
sion, small integrin-dependent focal complexes are
formed that attach the new protrusion to the ECM.
Some focal complexes then develop into large focal
adhesions that enable actomyosin contractile force to be
transmitted to the ECM [57]. The role of RhoA and its
effectors ROCK in mesenchymal motility is complex;
their activity needs to be reduced to extend protrusions
at the front of the cell [59], but they promote the retrac-
tion of the lagging tail [57]. As a result, the overall effect
of inhibiting these proteins in mesenchymal cells is
often minimal [60]. Mesenchymal cells are able to move
through a matrix-filled space by using proteases, such as
MMPs and urokinase-type plasminogen activator (uPA),
that degrade ECM proteins and creates the path [61,62].

Amoeboid motility
Amoeboid movement of cells is likely to use similar
mechanisms of the migration of leukocytes and Dictyoste-
lium discoideum [63]. This movement is very similar to
the rounded Rho- and ROCK-dependent form of motility
that has been described in A375m2 melanoma and
LS174T colon carcinoma [60]; With the advent of multi-
photon microscopy, intravital imaging of mammalian sys-
tems has greatly improved and has opened up new ways
to explore chemotaxis, cell-cell interactions and the
metastatic cascade within the in vivo microenvironment.
High resolution intravital imaging have demonstrated
that some carcinoma cells move at very high speed with
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an amoeboid morphology (up to 4 μm/min) in vivo
[54,64]. This motility style is largely independent from
cell-ECM contact and from proteolytic degradation of
ECM from MT or soluble MMPs. Amoeboid moving
cells show rounded morphology and greatly exploit as a
propulsory force the acto-myosin cytoskeleton contracti-
lity, without Rac-driven cell polarization, but requiring
Rho activation. Cortical actin contraction driven by
Rho-ROCK signalling through myosin activation might
promote the rapid remodelling of the cell cortex charac-
teristic of amoeboid movement [54,60,65].
Furthermore, cell-ECM attachments of amoeboid

moving cells are not organized in large focal adhesions
but are very diffuse and much weaker cell-ECM attach-
ments are required, because amoeboid movement can-
not be blocked by inhibition of integrin function
[55,66]. Notably, proteases are not required for this
style, because cells are able to squeeze through gaps in
the ECM instead of degrading it [66]. These differences
in “path generating” by proteolysis for mesenchymal
moving cells or in “path finding” by squeezing for
amoeboid cells could explain the different speeds of the
two styles.

Collective motility
A third form of motility is collective cell motility. Col-
lectively migrating cells maintain their cell-cell junctions
and migrate in sheets, strands, tubes and cluster, either
still in connection with their originating tissue or as
separated, independently migrating cluster. In cancer,
collective cell migration and invasion is found in distinct
cancer types, including high and intermediate differen-
tiated types of lobular breast cancer, epithelial prostate
cancer, large cell lung cancer, melanoma, rhabdomyosar-
coma, and most prominently in squamous cell carci-
noma. High-resolution multimodal microscopy has
shown that the guiding cells use b1-integrin-mediated
focal adhesions and local expression of MT1-MMP at
their leading edges to cleave collagen fibers and orient
them in a way that generates tube-like microtracks into
which the collective mass migration of follower cells can
occur [67,68]. Mechanistically, this is similar to a collec-
tive form of mesenchymal motility, with the cells at the
front producing MMPs and generating a ‘path’ for the
following cells [68]. In contrast to single cell movement,
which requires the loss of adherens junctions, the main-
tenance of adherens junctions is important for this form
of movement [67]. The mechanics of this form of moti-
lity are poorly understood because of the difficulties of
modelling it in vitro. However, the regulatory pathways
underlying collective cell migration have just begun to
be elucidated and its clinical manifestations, prognostic
value, and actual contribution to metastasis remain to
be assessed

Plasticity of tumor-cell migration
Cells from several origins, and among them cancer cells
are particularly talented, are able to engage ad hoc epi-
genetic/ontogenetic programmes enabling them to adapt
to environmental changes. This ability of cells, com-
monly referred as cell plasticity, is often related to dif-
ferent strategies to move in 3 D tissues [65,69].
Loss of epithelial-like cell morphology to adopt a

motile phenotype has been termed epithelial-mesenchy-
mal transition (EMT). This is a profound change in cell
phenotype that causes immotile epithelial cells to
acquire traits such as motility, invasiveness, and resis-
tance to apoptosis or the ability to adapt to environmen-
tal changes and continue to invade successfully. These
features are driven by extracellular signals, most of
which are still unknown, which in turn induce expres-
sion of a series of transcription factors guiding the
achievement of the new plastic, adjustable phenotype.
In the EMT process, the cells lose their epithelial

characteristics, including their polarity and specialized
cell-cell contacts, and acquire a mesenchymal migratory
behaviour, allowing them to move away from their origi-
nal site towards remote locations [70,71]. EMT illus-
trates the differentiation plasticity during development,
but is commonly exploited by cancer cells to invade and
metastatize [69,71,72]. Mesenchymal motility is charac-
terised by elongated and polarized cell morphology; it
depends upon ECM proteolysis of the moving cells
which, through production of MMPs, generates a ‘path’.
Although several soluble factors that promote this pro-
cess have been identified, the pathophysiologic context
in which they act remain unclear. Inflammation is a key
conspirator in the emergence of EMT in adults,
although it is absent during embryonic development,
suggesting the existence of multiple stimuli eliciting
EMT and possible multiple different subtypes of EMT.
Recently Kalluri and Weinberg proposed a classification
of EMT: type 1 EMT serves for embryonic development,
type 2 for tissue repair and type 3 for metastatic spread-
ing of cancer [71]. While type 1 EMT is independent
from inflammation and injuries, both type 2 and 3 share
their dependence from inflammation and are character-
ized from their endurance until the provoking spur is
removed. Of note, exogenous addition of MMP-3,
MMP-2 or MMP-9 facilitate EMT likely through clea-
vage of E-cadherin [73,74]. Finally, type 3 EMT is facili-
tated by genomic and epigenetic alterations acquired by
cancer cells, and some of these alterations have been
reported also in tumor-associated stroma.
The EMT transcriptional programme has been

associated with activation of several key transcriptions
factors, including Snail-1 and Snail-2 (Slug), Twist, ZEB-
1-2, etc. The large number of transcription factors
which can be engaged to elicit the same phenotype, i. e.
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the transition from an epithelial-like to a mesenchymal-
like cell behaviour, is not necessary indicative of redun-
dancy. Indeed, different stimuli able to elicit EMT
appear to act on different transcription factors. Tumor
microenvironmental cues as inflammation [75] or stro-
mal fibroblasts (Chiarugi, P., unpublished data) drive a
Snail-1-dependent EMT, while intratumoral hypoxia eli-
cits a Twist-mediated EMT [76-78]. In addition, miR-
NAs are able to regulate EMT acting mainly on ZEB-1
and ZEB-2 [79,80]. The transcriptional programme leads
to regulation of a series of proteins: decrease of E-cad-
herin for disruption of adherens junctions, increase in
N-cadherin and Met proto-oncogene to drive motility,
as well as increase in MMPs and uPA/uPAR proteolytic
systems to degrade 3 D barriers [71,72].
In response to particular environmental cues, cancer

cells can de novo acquire an amoeboid-like motility,
thus undergoing to what has been termed mesenchymal
to amoeboid transition (MAT). The latter is a primitive
form of cell migration that allows cells to glide through,
rather than degrade, ECM barriers through weakened
cell-ECM attachments. Conversely to mesenchymal
motility, cells moving through an amoeboid mode show
independence from proteolytic systems to degrade 3 D
barrier and the movement of cells depends on their abil-
ity to squeeze between gaps of ECM instead from the
ability to degrade it [55,65].
MAT can be induced in cells by both environmental

or epigenetic cues. In fibrosarcoma and melanoma cells
the inhibition of integrin or MMP function, leads to
switch from mesenchymal to an amoeboid-like migra-
tion program, thereby rescuing motility by alternative
mechanisms and sustaining the dissemination of single
cancer cells [55,66,81]. Indeed fibrosarcoma and mela-
noma cells, in the presence of a cocktail of a broad
spectrum protease inhibitors, convert their motility style
from proteolytic to amoeboid, thus undergoing MAT. In
keeping with the different dependence of mesenchymal
or amoeboid motilities from integrin engagement, treat-
ment of sarcoma cells with integrin antagonists elicits a
clear MAT [55,66,81,82].
Beside environmental regulation, MAT can also be

induced by epigenetic expression of regulating factors.
First, prostate carcinoma cells move through and
EphA2-mediated amoeboid motility [83,84]. Second,
aggressive melanoma cells are able to shift ad hoc
between mesenchymal and amoeboid motility: in
response to pro-inflammatory cytokines they undergo
EMT, while after re-expression of embryonic EphA2
receptor, experience a new kind of motility program
undergoing MAT [81]. In addition, fibrosarcoma cells
have been reported to undergo MAT during forced acti-
vation of stathmin, a known microtubule cytoskeleton
regulator, or during inhibition of the E3-ubiquitin ligase

for RhoA Smurf1 [85,86]. Finally, loss of p53 or p27
tumor suppressors promotes RhoA/ROCK-dependent
cell migration and invasion in 3 D matrices for human
melanoma cells, suggesting that MAT is associated with
worse prognosis cancers [87-89].
Nevertheless several interesting data indicate that

MAT is an efficient plasticity programme for cell moti-
lity, the identification of the molecular players regulating
MAT is still at its infancy. In any case, as the different
reported examples of MAT share some key features, as
cell body constriction and independence from proteases,
we speculate that MAT, as well as EMT, should be dri-
ven by a transcriptional response. One the first event
could be the repression of EMT, i.e. an “inverse” tran-
scriptional programme”, and of its transcriptional execu-
tors Snail and Twist, but it is likely that MAT switches
on its own transcription factors.
Similarly with respect to EMT, the transition from

collective invasion to amoeboid movement relies in
weakening cell-cell and cell-ECM interactions, i. e. dis-
ruption of E-cadherin mediated adherens junction and
integrin-linked focal complexes [68,90]. Melanoma cells
have been indicated to move in cohorts of multicellular
clusters but the contextual inhibition of b1 integrins
abolished these collective movement, thereby inducing
detachment of individual single moving cells using
amoeboid style to invade, i.e a collective to amoeboid
transition (CAT) [91]. To date it is unknown that CAT
converts collective migration to the amoeboid one
directly or via an intermediate mesenchymal migration
step [55].

Reciprocal control of Rac and Rho small GTPases
A mutual antagonism between the Rac and Rho
GTPases has been observed in several cellular settings,
raising the significant question of its integrated in cell
behaviour. In A375M2 melanoma cells, displaying a pre-
dominantly amoeboid phenotype with a minority of cells
migrating in a mesenchymal fashion, Sanz-Moreno iden-
tified DOCK3 as a GEF specific for Rac1, NEDD9 as an
adaptor protein of the p130Cas family binding DOCK3,
and WAVE2 as a protein that promotes actin nucleation
downstream of Rac [92]. In this cell model there is a
reciprocal inhibitory relationship between Rac and Rho
signaling cascades establishing a regulatory switch
between the mesenchymal and amoeboid phenotypes.
Mesenchymal melanoma morphology and invasiveness
style is controlled by a Rac1 activation pathway,
mediated by adaptor protein NEDD9 and DOCK3,
acting as a Rac1-GEF. Cell elongation and actin poly-
merization downstream to Rac1 is mediated by the
actin-nucleation protein WAVE2. WAVE2 is also
responsible for downregulation of actomyosin contracti-
lity, cytoplasm blebbing and amoeboid motility. On the
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contrary in amoeboid moving cells, Rho activation sti-
mulates a ROCK-mediated actomyosin and cell body
contractility. In parallel, amoeboid signalling leads to
downregulation of mesenchymal movement, mainly
through inhibition of Rac1 by activating the Rac-GAP
ARHGAP22, thereby completing the circuitry of Rac1-
RhoA antagonism.
Beside ARHGAP22 and DOCK3/NEDD9 signaling,

other pathways leading to shift of Rac/Rho balance in
favor of the last induce MAT as well. These include the
interference with Rab5-mediated endocytosis and recy-
cling of Rac to cell protrusions [93] and the inhibition
of E3 ubiquitin ligase Smurf1, which leads to Rho degra-
dation directly at the leading edge and thereby grants
for dominance of Rac at the front of polarized cells [86].
Studies on specific extracellular signals acting in

favour of mesenchymal or amoeboid movements are
still at their infancy. Clearly, extracellular factors act on
different invasive styles through Rac and Rho modula-
tion and the role of their GEFs and GAPs is mandatory.
Presumably both Rac1 and Rho activation are ultimately
controlled by GFs and integrin activity, thereby suggest-
ing the existence of additional mechanisms by which
Rac can inhibit the Rho-mediated amoeboid phenotype.
Activated Rac in response to integrin engagement has
been shown to stimulate the activity of p190RhoGAP
(which down-regulates the activity of Rho isoforms) by
promoting its phosphorylation. Indeed, the oxidative
cascade involving Rac1, reactive oxygen species (ROS)
and a p190RhoGAP phosphatase has been correlated
with the antagonistic crosstalk between Rac1 and the
RhoA [94]. Extracellular activation of Rac1 leads to
enhancement of ROS production and this leads in turn
to redox inhibition of Low-Mw protein tyrosine phos-
phatase (LMW-PTP), finally enhancing the phosphoryla-
tion of its substrate p190RhoGAP [94,95]. The redox
circuitry engaged by mesenchymal stimuli is closed
because phosphorylated p190RhoGAP downregulates
RhoA and suppresses amoeboid activity. In a specular
fashion, activation of the repulsive EphA2 receptor in
prostate carcinoma cells is accompanied by reduced
Rac1 activity and attenuated generation of ROS, which
leads to LMW-PTP activation, p190RhoGAP depho-
sphorylation and to an increase of Rho signaling [83,96].
EphA2 receptor activation by its cognate ligand
ephrinA1 is a powerful signal to activate RhoA and its
overexpression and activation causes achievement of
amoeboid invasive styles from both prostate carcinoma
and melanoma cells [81,83,84,96]. In addition, p120-
catenin supports Rac-Rho crosstalk by controlling the
cortical localization of p190RhoGAP and thereby allow-
ing Rho inhibition through activation of Rac [97,98].
Indeed, in p120-deficient cells, p190RhoGAP was acti-
vated via its redox pathways by a constitutively active

Rac mutant but was unable to inhibit Rho [97]. This
coordinated and opposed activity of Rac1 and RhoA is
crucial to cellular dynamics, the former promoting
membrane protrusion, cell polarity and spreading, the
second cytoskeleton contractility and tail retraction Col-
lectively, the above evidence indicate that the intricate
cross-talk between Rho family GTPase that underlies
dynamic cell responses is in large part redox regulated
(figure 2).
Moreover, Radisky et al. reported that activation of

EMT in breast carcinoma cells is associated with expres-
sion of the alternatively spliced Rac1 isoform, the consti-
tutively active Rac1b, and thereby to ROS generation.
Although the identification of the direct redox protein
sensors driving EMT is still lacking, these oxidant have
been proved to be genotoxic, thereby contributing to
both carcinogenesis and tumor invasiveness [74]. Our
preliminary observations in this context indicate that in
cancer cells the ROS generated upon EMT commitment
also retain signalling roles, enhancing expression of
transcription factors correlated with mesenchymal or
inflammatory programs as Snail-1, Twist, hypoxia indu-
cible factor-1 or nuclear factor �-B (Chiarugi, P., unpub-
lished results). In the context of EMT the
downregulation of Rho proteins, although highly feasi-
ble, remains to be described in its molecular details.

Aberrant regulation of Rac and Rho proteins in cancer
As a consequence of the large number of key functions
assigned to Rho proteins, like proliferation, apoptosis/
survival, cell polarity, cell adhesion and plasticity of cell
migration [99,100], it is not surprising that they play
important roles in tumor biology [101]. A clear connec-
tion can be established between Rho proteins overex-
pression and a large variety of human tumors [102,103].
Rho GTPases have been reported to contribute to most
steps of cancer initiation and progression including the
acquisition of unlimited proliferation potential, survival
and evasion from apoptosis, angiogenesis, tissue invasion
and the establishment of metastases (figure 3). Some
Rho GTPases stimulate cell cycle progression and regu-
late gene transcription, and this could in part explain
their pro-oncogenic properties, for example in promot-
ing Ras-induced transformation [104]. Some Rho
GTPases are thought to be able to regulate the release
of pro-angiogenic factors to promote neovascularisation
[105]. The ability of Rho GTPase family members to
regulate loosening of epithelial cell-cell contacts, MMPs
expression and the plasticity of cell migration (EMT,
MAT) [103] points to a central role in cancer cell inva-
sion and metastasis (figure 3).
Primary tumors generally arise as a consequence of

multiple mutations and epigenetic changes affecting key
genes that ultimately affect proliferation and survival.
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Unexpectedly, to date, no mutations have been found
in Rho proteins. Only one member of the Rho family
of small GTPases (RhoH) has been reported to be
genetically altered in non-Hodgkin’s lymphomas and
multiple myeloma. Since mutations in Rho proteins
have not been found, deregulation of Rho GTPase sig-
nalling could occur at the level of expression or activa-
tion of Rho GTPases, accomplished by the level of
expression or activation of their regulators or down-
stream effectors. RhoA and RhoC expression and/or
activity is frequently increased in human tumors,
whereas RhoB is often downregulated [106]. Increased
RhoA expression was described in various human
tumors including liver [107], skin [108]and colon can-
cer [109]. In liver, increased RhoA expression corre-
lated with increased RhoA activity, poor prognosis and
recurrence [107]. Elevated RhoA levels also corre-
sponded to progression of ovarian [110], bladder [111],
gastric [112] esophageal squamous cell [113], and testi-
cular cancer [114] (table 1). RhoA has been implicated
in virtually all stages of cancer progression: for exam-
ple, in vitro, constitutively active RhoA can stimulate
transformation [115]. In normal epithelia, RhoA contri-
butes to the generation of epithelial polarity and junc-
tion assembly and function [116] but also affects
epithelial disruption during tumor progression. RhoA

activity can be inhibited downstream of cadherins lead-
ing to a more motile phenotype [97]. Different GEFs
and GAPs influence how Rho proteins can act in dif-
ferent contexts either promoting epithelial organization
and polarity or epithelial EMT, as seen in studies of
RhoA GEFs/GAPs in Drosophila models [117].
A 3 D in vitro invasion model using co-cultures of

SSC12 carcinoma cells with stromal fibroblasts, has
shown how this fibroblast generates the traction force
and remodels the matrix through MMPs. Different Rho
GTPases were found to be required in the leading fibro-
blast and the following carcinoma cells with a RhoA
regulation of MLC in the former and mainly Cdc42 and
myotonic dystrophy kinase-related Cdc42-binding kinase
(MRCK) function in the latter [118]. In contrast to
RhoA, RhoC has no apparent transforming activity.
RhoC was identified in a screen for genes upregulated in
melanoma metastases [119], and has subsequently been
proposed as a marker for poor prognosis in cancers of
different origins [120]. RhoC is upregulated in many
cancers including breast cancer [121] and squamous cell
carcinoma (SCC) of skin [122] (table 1). Increased
expression of RhoC correlates with progression and
poor prognosis of ductal adenocarcinoma of pancreas
[123], hepatocellular cancer [124], breast cancer [109],
ovarian cancer [110], bladder cancer [111], gastric

Figure 2 Reciprocal regulation between Rho and Rac during mesenchymal or amoeboid motility styles. ROS act as a balance for Rac-1/
RhoA antagonism. Indeed Rac-1, which drives oriented mesenchymal motility, leading edge protrusion and lamellipodia formation, is a key
molecular player of regulated intracellular ROS sources. Rho activation is responsible for amoeboid motility, a non-oriented movement which
enables the cell to squeeze between gaps of ECM instead of proteolytically degrade it. Hence, upon Rac activation oxidation/inactivation of the
LMW-PTP which normally activate the Rho regulator p190Rho-GTPase, leads to RhoA down-regulation. Conversely, low ROS intracellular content
lead to RhoA activation, through LMWPTP activation and p190RhoGAP dephosphorylation/inactivation. Activated RhoA is able to inhibit Rac-1
through the ARHGAP2 (also named chimerin-2), while Rac1 activates WAVE2 which in turn inhibits RhoA.
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cancer [125], esophageal SCC [113], head and neck SCC
[120], prostate cancer [126], and non-small cell lung
carcinoma (NSCLC) [127]. In contrast to RhoC, expres-
sion of RhoA and RhoB did not correlate with poor
prognosis in pancreatic cancer [123]. Increased RhoC

expression has been claimed as the possible cause for
the induction in invasion and metastasis triggered by
the overexpression of the microRNA-10b in breast can-
cer [128]. RhoC expression is increased during EMT in
a colon cancer model and contributes to EMT-induced

Table 1 Aberrant regulation of Rho proteins in cancer

Rho
proteins

Mechanism of
deregulation

Tumor type

RhoA High protein levels,
high signalling activity

Liver [107], skin [108], colon [109], ovarian [110], bladder [111], gastric [112], esophageal squamous cell (SCC)
[113], testicular [114], breast [109]

RhoB Overexpression or
downregulation

Breast (overexpression) [109], lung (downregulation) [151]

RhoC High protein levels,
high signalling activity

Melanoma metastases [119], breast [121], squamous cell (SCC) [122], pancreas [123], liver [124], ovarian [110],
head and neck [120], prostate [126], non-small cell lung (NSCLC) [127], gastric cancer [125]

RhoH Rearrangement and
mutations
(5’ UTR)

non-Hodgkin’s lymphomas and multiple myeloma [152]

Rac1 High protein levels,
high signalling activity

Testicular, [114]gastric [112], breast [136], squamous cell (SCC) [137]

Rac1B Alternative splicing Colon [148]; Breast [136]

Rac2 High protein levels Head [108] neck squamous-cell carcinoma (SCC) [122]

Rac3 Hyperactive or
overexpression

Breast [22]

Figure 3 Involvement of Rho proteins at different stages of tumor progression. A) Maintenance of normal epithelial cell polarity. B) Benign
tumors: once a tumor is initiated, Rho proteins can contribute to tumor development by stimulating dedifferentiation, growth and loss of cell
polarity. C) Locally invasive tumors: Rho proteins can contribute to tumor development by altering cell-cell and cell-matrix adhesion, Rho
proteins allow tumor cells to become invasive. D) Metastasis to distant site: Rho and ROCK are required for tumor cells to cross endothelial cell
layers. RhoC promotes expression of angiogenic factors, leading to an increase in vascularization of the tumor.
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migration, whereas RhoA levels go down [129]. It is not
yet clear how RhoC increases invasion and metastasis or
why its effects differ from RhoA. Some reports indicate
that RhoA, RhoC and their downstream target ROCK
are needed for cancer cell extravasation [130]. Interest-
ingly, RhoC can induce the production of angiogenic
factors in breast cancer, and this could help promote
entry into blood vessels and thereby metastasis dissemi-
nation [105]. Unlike RhoA and RhoC, RhoB is often
downregulated in human tumors and its expression
inversely correlates with tumor aggressiveness. It has
been proposed that RhoB can work as a tumor suppres-
sor as it is activated in response to several stress stimuli
including DNA damage or hypoxia, and it has been
reported to inhibit tumor growth, cell migration and
invasion and have proapoptotic functions in cells [131].
RhoB knock-out mice develop normally but have
enhanced carcinogen-induced skin tumor formation, in
agreement with a role of RhoB as a tumor suppressor
[132]. RhoB also suppresses invasion: for example it has
been postulated to act downstream of protein kinase C
in the regulation of cancer cell invasion in vitro [133]
and it was also reported to inhibit Ras-induced invasion
and metastasis [134]. The exact mechanism whereby
RhoB suppresses tumor growth and invasion is not
clear, although its role in endosomal trafficking could be
important. RhoB regulates the delivery of signalling pro-
teins, including growth factor receptors and the tyrosine
kinase Src, to specific intracellular compartments [135],
and this could certainly influence proliferation and
invasion.
The Rac subfamily of Rho GTPases includes Rac1,

Rac2, Rac3. Rac1 is over-expressed in various tumors
and accumulating evidence indicate that Rac1-depen-
dent cell signalling is important for malignant transfor-
mation [106]. Overexpression of Rac1 correlates with
progression of testicular [114], gastric [112], and breast
cancer [136]. Rac1 is also overexpressed in oral SCC
[137] (table 1). Rac1 knock-out in mice is embryonic
lethal [138] but conditional knock-out mice have been
studied extensively [139]. In a conditional lung cancer
mouse model Rac1 function was required for K-Ras-dri-
ven proliferation and tumorigenicity [140]. Similarly,
mice lacking the Rac-specific GEF Tiam1 are protected
from Ras-induced skin cancer, developing fewer tumors,
although the tumors that do form are more aggressive
[141]. These results suggest that Rac proteins normally
stimulate tumor cell proliferation but inhibit tumor dis-
semination. Rac1 could contribute to cancer cell prolif-
eration via regulation of the cell cycle: for example, it
stimulates expression of cyclin D1, and induces cell
transformation in vitro [104]. Active Rac can mediate
the loss of adherens junction in some situations, pro-
moting a more invasive phenotype [142]. Rac1 can also

contribute to cancer cell invasion by regulating the pro-
duction of MMPs and their natural inhibitors, the tis-
sue-specific inhibitors of MMP (TIMPs) [143]. Like
Rac1, Rac2 and Rac3 are over-expressed in some
tumors. Rac3 is hyperactive and/or deregulated in breast
cancers [22]. The contribution of different Rac isoforms
to migration is likely to depend on the cell type and
their relative expression levels. Rac2 is required for neu-
trophil migration but whether it acts similarly in tumors
is not known [144]. In contrast, Rac1 and Rac2 are dis-
pensable for cell migration in macrophages, although
Rac1 is required for invasion [145]. Studies of Rac3-null
mice indicate that Rac3 but not Rac1 or Rac2 specifi-
cally contributes to the development of Brc/Abl-induced
lymphomas in vivo [146]. However, in fibroblasts, Rac1
but not Rac3 suppression by RNAi affects lamellipodium
formation although cell invasion is reduced in both
cases [147]. It is not yet clear how these results can be
translated to cancer cell invasion in vivo.
The splice variant of Rac1, Rac1b, was initially identi-

fied to be up-regulated in colon cancers [148]. It does
not bind RhoGDI and thus is present predominantly in
the GTP-bound state. Although Rac1b is defective in
activating several Rac1-regulated signaling pathways, in
some cell types it stimulates cell survival and cell cycle
progression through nuclear factor-kappa B, and is less
susceptible to ubiquitination and degradation, which
could explain its increased expression in cancers [149].
Rho GTPases are involved in all stages during cancer

progression (figure 3). Although their initial discovery
as regulators of cytoskeleton dynamics implied that they
are most likely to contribute to cancer cell migration
and invasion, it is now clear that the function of Rho
GTPases is not restricted to these events and that they
can affect tumor cells through modulation of gene tran-
scription, cell division and survival, intracellular trans-
port of signalling molecules or modifying the
interaction of cancer cells with surrounding stromal
cells. This makes the detailed analysis of how Rho
GTPases work in cells and contribute to tumors very
complex but at the same time promising for potential
future therapeutical intervention. The involvement of
specific GEFs or GAPs in defined processes regulated
by Rho GTPases makes them particularly suitable as
therapeutic targets [150].

Conclusions
Metastasis is a multistage process needing a strong
adaptability of cells to the different microenvironments
within primary tumors, in the ECM, in blood or lym-
phatic streams and finally in the metastatic niche. Intra-
vital imaging of GFP-expressing cancer cells in
subcutaneous tumors illustrated this adaptability. In the
core of the tumor neoplastic cells mainly moved using
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mesenchymal and elongated style, while cells at the
tumor edge escape the tumor limit and enter the ECM
using a rounded/amoeboid motility [92]. Genetic or
pharmacological treatment of ARHGAP22 or ROCK
shift one motility style to an other, thereby confirming
the key role of Rac and Rho GTPases in plasticity of cell
motility. More intriguingly, the combined treatments
aimed at blocking simultaneously both modes of migra-
tion strongly inhibit the opportunistic behaviour of can-
cer cells, thereby limiting their invasive potential. These
data indicate that the winning strategy to combat suc-
cessful metastatic diffusion of aggressive cancer cells is
either a combinatory treatment targeting both invasive
styles, or the identification of single molecular targets
driving the ability of cancer cells to adapt to environ-
mental changes, i. e. cell plasticity itself. Unfortunately,
the identification of the molecular mediators of plasticity
in cell motility is still at its infancy, but it will be surely
the next challenge to really target the opportunistic
motility of cancer cells [69].
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