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Abstract

non-sensory cells of the developing cochlea.

Calcium ions (Ca*") regulate numerous and diverse aspects of cochlear and vestibular physiology. This review focuses on
the Ca”* control of mechanotransduction and synaptic transmission in sensory hair cells, as well as on Ca** signalling in
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Review

Introduction

The cochlea is the snail-shaped inner ear structure
where auditory processing is initiated. Different regions
of the cochlear basilar membrane vibrate at different si-
nusoidal frequencies due to variations in membrane
thickness and width from the base (high frequency) to
the apex (low frequency) of the cochlea. The basilar
membrane supports a polarized sensory epithelium, the
organ of Corti, which is responsible for sound transduc-
tion; it has the form of an epithelial ridge encompassing
highly specialized sensory inner hair cells (IHCs) and
outer hair cells (OHCs) characterized by a mechano-
sensory organelle composed of a stereociliary bundle
protruding from the endolymphatic (apical) pole [1] (for
schematic drawings of cochlear structures and cellular
components, see e.g. Ref. [2]). All cells providing mech-
anical support to hair cells are designated as supporting
cells and, in the cochlea, these are flanked by epithelial
cells. In the following, supporting and epithelial cells of
the sensory epithelium will be collectively designated as
cochlear non-sensory cells. In the mature organ of Corti,
the supporting cells include inner phalangeal cells, inner
and outer pillar cells, outer phalangeal cells (also known
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as Deiters’ cells), as well as Hensen’s, Bottcher’s and Clau-
dius’ cells. In the lateral direction from the organ of Corti,
the epithelium comprises spiral prominence cells and mar-
ginal cells of the stria vascularis. Tight junctions between
neighboring cells prevent diffusion of proteins between
the apical and basolateral domain of hair cells and sup-
porting cells, and insulate endolymph, the unusual extra-
cellular fluid low in Na* and Ca®* but rich in K* that
bathes the apical pole of epithelium, from perilymph, the
normal extracellular fluid the bathes the basolateral mem-
brane of the cells. In adult wild-type rats, endolymph Ca**
concentrations have been reported as 20-30 pM [3]. Al-
though the detatils of endolymphatic Ca** development
are not known, it has been reported that a mature com-
position of endolymph in the mouse cochlea is reached
around postnatal (P) day 8 (P8, where PO indicates date of
birth) [4]. The stria vascularis is responsible for exporting
K" to endolymph and generation of the endocochlear po-
tential (reviewed in refs. [5-7]), an electrical potential dif-
ference between the endolymphatic and perilymphatic
compartments of the cochlea, which in rodents appears
around P5 and increases progressively to reach adult levels
(in excess of +100 mV in mice) by P17 [8-11].

Both the endocochlear potential and the high endo-
lymphatic [K'] are key factors for the mechanotransduc-
tion process performed by cochlear hair cells when
mechanical stimuli are applied to their stereocilia bun-
dle. Mechanotransduction relies on the large potential
difference between the endolymph and the cytoplasm of
IHCs and OHCs, which drives K" through mechanically
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gated channels in the stereociliary bundle [12]. In adult
hair cells, K" influx through mechanotransduction chan-
nels evokes a receptor potential, i.e. a graded change of
their resting membrane potential, V,,,. This analogue
modulation is used by the IHC to activate the synaptic
machinery present at its basal pole. By contrast, it is well
established that OHCs use their receptor potential to
fuel the local mechanical amplification process, driven
by the motor protein prestin, which is required for the
high sensitivity and sharp frequency selectivity of mam-
malian hearing (reviewed in Ref. [13]; see also [14,15]),
however their sensory function is poorly understood.

During the period of time that precedes the acquisition
of hearing, which in most rodents occurs around the
second week after birth, the sensory epithelium is formed
by the juxtaposition of the greater epithelial ridge, which
gives rise to the IHCs and medial non—sensory cells, and
the adjacent lesser epithelial ridge, which is thought to give
rise to the OHCs and lateral non—sensory cells [16,17].
Hearing acquisition relies not only on the functional
maturation of hair cells, but also on differentiation and
proper organization of non-sensory cell networks that
couple transfer of signaling, ion, and nutrient molecules
through gap junction channels (reviewed in ref. [18]). The
epithelial gap junction network forms around embryonic
day 16 and connects all supporting cells in the organ of
Corti as well as adjacent epithelial cells. A second network,
named connective tissue gap junction network, starts to
develop around birth and comprises interdental cells and
fibrocytes in the spiral limbus, fibrocytes of the spiral liga-
ment, basal and intermediate cells of the stria vascularis
(reviewed in refs. [19,20]). In the so called K" recycle (or
recirculation) hypothesis (reviewed in refs. [21-23]), the gap
junction networks of the hearing cochlea are presumed to
intervene during mechanotransduction, performing spatial
buffering of the K" released by the hair cells through K*
channels in their basolateral membrane.

Calcium ions (Ca**) play numerous and fundamental
roles in the inner ear. In the first part of this review, we
focus on the aspects of sound transduction that are influ-
enced by Ca*, including mechanotransduction function
and neurotransmitter release at the hair cell synapse. In
the second part, we concentrate on Ca** signaling in the
network of non-sensory cells in the developing cochlea.

Ca** at the hair cell endolymphatic pole

In the cochlea, the relative motion between the sensory
cells and their overlaying structure, the tectorial mem-
brane, causes the deflection of the hair bundle and the
opening of mechanotransduction channels, one of the few
ion channels not yet conclusively identified [24]. Stereocilia
in the hair bundle are arranged in rows of graded height
[25] and a fine extracellular filament, termed the tip
link, connects the top of each stereocilium to the side
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of its taller neighbor, parallel to the bundle’s axis of mech-
anical sensitivity [26]. Tip-links are mechanically in series
with a yet unidentified elastic element, termed gating-
spring [26,27], which pulls on transduction channels and
whose stiffness may be Ca®*-dependent [28]. It is thought
that the hair cell receptor potential is caused by deflection
of the hair bundle towards the tallest stereocilia, which
increases the tension in the tip link causing the opening
of mechanotransduction channels located at its bottom
end [12]. Indeed, application of the Ca®" chelator BAPTA
to the hair bundle disrupts the tip links and abolishes
mechanotransduction currents [29-31]. Cadherin 23 and
protocadherin 15, respectively comprising 27 and 11 cad-
herin repeats, with Ca** binding sites in the interrepeat
regions, interact at their N termini forming the upper
(cadherin 23) and lower (protocadherin 15) part of tip
links [32]. Furthermore, Molecular Dynamics simulations
of the first two repeats of cadherin 23 suggest that Ca*
binding at interrepeat sites is essential to determine cad-
herin 23 stiffness and folding strength [33]. A Ca** bind-
ing motif has also been identified at the N terminus of
cadherin 23 [34], which could play an important role in
the formation of the tip link and might also account for
the disruptive effects of BAPTA [29,30]. Recent results in
transgenic mice provide genetic evidence consistent with
protocadherin 15 and cadherin 23 being part of the tip-link
complex and necessary for normal mechanotransduction
[35]. Further support to the tip-link model of transduction
is derived from the evidence that mutations in genes
encoding for cadherin 23 and protocadherin 15 have been
associated with Usher syndrome type 1 and nonsyndromic
hearing loss DFNB12 and DENB23 [36-38].

Not only is Ca®* essential to preserve the structure of the
tip-links, but it also contributes to the mechanotransduc-
tion current. Based on early experiments performed under
mM levels of extracellular Ca** concentration ([Ca*],), it
had been concluded that ~10% of the total mechanotrans-
duction current was carried by Ca®* [39]. However, as
previously mentioned, [Ca®*], in endolymph is as low as a
few tens of pM [3,40] and recent work indicates that the
fraction of mechanotransduction current attributable to
Ca®™ decrease in proportion to [Ca®'],; at endolympatic
levels of [Ca®*],, it accounts for only the ~0.2% of the total
mechanotransduction current [41]. In a standard experi-
mental protocol, adaptation is measured by the decrease in
mechanotransduction current, which occurs during
a sustained deflection of the hair bundle [42]. Under these
experimental conditions, adaptation shifts the relation-
ship between the channel open probability (Py) and the
bundle displacement (X) in the direction of the applied
stimulus, canceling the effects due to sustained stimuli
while maintaining the sensitivity to transient stimuli
[43]. In this complex phenomenon, at least two phases,
both Ca®*-dependent, can be distinguished: (i) fast
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adaptation, which occurs when Ca®* enters transduction
channels, then closes them within a few milliseconds or
less; (ii) slow adaptation, which occurs with a time con-
stant that spans a wide range of 10-50 ms depending on
the type of hair cells studied (reviewed in [24]).

Fast adaptation is thought to be caused by the direct
binding of Ca** to an intracellular site of the mechano-
transduction channel or a closely associated subunit which
closes the channel itself [28,44-47]. Slow adaptation,
which has been studied extensively in vestibular hair cells,
has been linked to activity of molecular motors [42], com-
posed of unconventional myosin molecules [48-50], which
interact in a Ca®*-dependent manner with actin filaments
at the core of stereocilia [51]. The known stereocilia myo-
sins that could affect adaptation in both IHCs and OHCs
are myosin-Ic, VIIa, and Illa [52-54]. Another unconven-
tional myosin, XVa, which is required for normal growth
of hair cell stereocilia, has been implicated in fast adapta-
tion based on a study of P1-P4 shaker 2 mice (that have
no functional myosin-XVa) [55]. This study indicates that:
(i) Ca** sensitivity of the mechanotransduction channels
and the fast adaptation require a structural environment
that is dependent on this unconventional myosin; (ii) this
environment is disrupted in IHCs of this mutant strain,
but not in OHCs. However, available data indicate that
myosin-XVa is present at the tips of wild-type stereocilia
in both IHCs and OHCs [56,57]. Thus, to account for the
different effects of myosin-XVa deficiency in OHCs and
IHCs, it has been suggested that the loss of fast adaptation
in IHCs of shaker 2 mice is associated with an unusual
hair bundle architecture in these cells [55].

As for the mechanism of slow adaptation, in the clas-
sical scheme the motor complex is located in series with
the transduction channel and its spring and is continu-
ously trying to “climb up” the stereocilium, changing
the position of the upper end of the tip link, thus
increasing tension. Following a positive stimulus, the
motor complex “slides down”, decreasing tension in the
tip link and closing the channel [51]. However, analysis
of the time course and pattern of myosin-Ic expression
in IHC and OHC stereocilia [53,58] poses several chal-
lenges to the motor model of adaptation [24]. Further-
more, a motor complex located at the upper end of the
tip link is hard to reconcile with the localization of the
mechanotransduction channel, and thus of the site of
Ca®* entry, at the lower end of the tip link [12]. In order
to resolve this conundrum, it has been proposed that
Ca®" entering through a transduction channel might
affect the adaptation motor hooked up to the next tip
link lower down the same stereocilium (for an explica-
tive scheme, see Fig.5 of Ref. [51]). This implies that the
tallest rows of stereocilia, which do not admit Ca**
through mechanotransduction channels, are not likely
to present Ca®*-dependent adaptation.
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It is probably worth mentioning also that Ca** can
influence mechanotransduction via cyclic adenosine
monophosphate (cAMP), which has been shown to
affect the response-displacement curve of the transducer
[59]. This signaling pathway may involve cAMP produc-
tion by Ca®*-calmodulin activated type I adenyl cyclase
[60], cAMP-induced activation of protein kinase A and
phosphorylation of the mechanotransduction channel or
the myosin motor [43].

After entering the stereocilia through mechanotrans-
duction channels, Ca** is rapidly bound by endogenous
Ca®" chelators, present at millimolar concentration [61],
which restrict the distance Ca>* diffuses to a few tens of
nm from the mouth of the channel [39]. Also mitochon-
dria, conspicuously concentrated in a band beneath the
cuticular plate (the cytoskeletal anchor for the stereocili-
ary bundle) [62,63], can act as large-capacity Ca>* store
[41]. In OHCs, the mitochondrial barrier may be
bypassed by ATP-induced release of Ca®* from a system
of endoplasmic reticulum membranes located beneath
the cuticular plate known as Hensen’s body [63].

Ca®* is eventually exported back to endolymph by
plasma membrane Ca**-ATPase (PMCA) pumps, which
are highly expressed in the hair bundle of vestibular and
cochlear OHCs and, to a lesser extent, IHCs [64]. The
stereociliary PMCA can be sufficiently active to elicit a
substantial membrane current during transduction
[65,66]. The pump isoform of the stereocilia is the
PMCA2, encoded by the ATP2b2 gene [67-70]. The ex-
trusion task is performed by the w/a splicing isoform of
PMCA2 [71,72]. Ablation of the ATP2b2 gene causes
deafness and balance disorders in mice [68], further-
more, various PMCA2 mutations have been linked to
hereditary hearing loss in mice and humans. Some of
the mutations described so far led to the truncation of
the molecule and to its eventual disappearance from the
stereocilia of the hair cell [68,70,73]. Three of the
described mutations were instead point mutations that
did not compromise the reading frame of the gene and
were, thus, compatible with the expression of the full
length PMCA2w/a variant of the pump; they all affected
residues that are highly conserved in all PMCA isoforms
across species and in other P-type pumps [69,74,75].
Recently, the Tommy mouse mutation was identified as
a new PMCA2 pump mutant with progressive deafness
from an ENU mutagenesis screen [76]. These mice show
profound hearing impairment from P18, with significant
differences in hearing thresholds between wild type and
heterozygotes. Furthermore, immunofluorescence stud-
ies of the organ of Corti in homozygous Tommy mice
showed a progressive degeneration of hair cells after P40
from the base of the cochlea (where high frequencies are
detected) to its apex (low frequency region; see
Introduction).
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Due to the crucial role of Ca* at the endolymphatic pole
of the hair cell for the performance of the mechanotrans-
duction channel, a diminished Ca** removal from the
stereocilia is expected to affect the mechanotransduction
currents. Indeed, pharmacological blockade [41], as well as
mutation or knock out of the PMCA2 pump [77] have
been reported to shift the current-displacement (I-X) curve
in the positive direction and to reduce its slope consider-
ably. Moreover, the only cochlear PMCA2 exposed to
endolymph is that of the stereocilia [64,78]. Thus if less
Ca** is exported from the stereocilia , its concentration in
the endolymph is expected to fall [78]. This may provide a
clue as to why, in some cases, mutations in the gene of the
PMCA2 pump potentiated the deafness phenotype
induced by coexisting mutation of Cadherin 23 [77,79,80].

Ca** regulation of synaptic transmission

As mentioned in the introduction, mature hair cells re-
spond to hair bundle deflection with graded changes in
their membrane potential, which ultimately result in
neurotransmitter release from the cell synaptic pole (see
[81] for review). In contrast, before the onset of hearing,
IHCs do not generate graded sound-driven receptor
potentials but fire spontaneous Ca®*-driven action
potentials [82-84]. These are prevented in mature IHCs
by the expression of the rapidly activating large-
conductance Ca®*-activated K current [85,86] and the
negatively activating delayed rectifier Iy ,, carried by
KCNQ4 channels [83] (see [87] for a review). The IHCs
synapses are already functional in the pre-hearing period
[88], and glutamate release triggered by action potentials
may be important for the refinement of the synaptic
connections in the auditory pathway [89].

The hair cell synaptic machinery is unique in its genre,
because of the special tasks it is required to accomplish.
This is especially evident for the afferent synapse of
cochlear IHCs, which must encode a wide range of
external sound stimuli with the sub-millisecond tem-
poral precision required for sound localization and
phase locking; moreover, the constant presence of acous-
tic stimulation requires the prolonged maintenance of
synaptic transmission [90]. The ability to produce both
rapid and sustained neurotransmitter release is thought
to be conferred to the hair cell synapse by the presence
of the symaptic ribbon, a specialized electron-dense
proteinaceous structure anchored at the synapse’s active
zone, where synaptic vesicle exocytosis occurs [91]. This
organelle, also found in retinal photoreceptor and
bipolar cells (see [92] for a review), tethers ~100-400
glutamate-containing synaptic vesicles through thin fila-
ments [93,94]. Some of these vesicles (~16-30) are kept
in direct contact with the plasma membrane [95,96] and
it has been suggested that the ribbon may be important
for synchronous multi-vesicular release [96-99].
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Vesicle exocytosis is triggered by the influx of Ca**
through class-D L-type Ca®* channels (Cay1.3) clustered at
each active zone [100-102] (~80 per active zone in mouse
IHCs [103]), where, they operate in close proximity with
Ca”*-activated K* channels (BK channels) [85]. In mam-
malian IHCs and OHCs, the majority of the total Ca*
current (>90%) is carried by Cay1.3 channels [100,104]. It
has been proposed that harmonin, a scaffolding protein
that has been also implicated in mechanotrasduction at the
level of the hair bundle [105,106], tags Cay1.3 channels for
ubiquitination and may thus constrain the number of pre-
synaptic Cay1.3 channels in IHCs [107]. The biophysical
properties of these channels make them particularly suit-
able for the demands of synaptic transmission in these
cells. First, Cay1.3 channels activate at relatively hyperpo-
larized membrane potential, as negative as -70 mV in
immature IHCs [100,108], indicating that they would be
capable of generating both the spontaneous action poten-
tials in immature IHCs and the fast synaptic response of
mature hair cells [84]. Second, they activate very rapidly
(~300-400 ps in gerbil basal IHCs) and show very little
inactivation in mature hair cells [109,110], a characteristic
that is required for sustained release. The exocytosis of
individual fusion-competent vesicles is mediated by the
stochastic gating of one or few Cay1.3 channels located
within a few nanometer from the release site and such
“nanodomain control” of neurotransmitter has been
proposed to permit temporally precise synaptic coding
even for weak stimuli [103].

Because Cay1.3 channels show strong Ca**-dependent
inactivation when studied in heterologous expression
systems [111], it has been proposed that calmodulin-like
Ca** binding protein (CaBP), which are expressed within
the organ of Corti, may moderate the inactivation in
cochlear IHCs by competing with calmodulin binding to
the channel’s C-terminus [112,113]. Recent work has
suggested that Rab3-interacting molecule-2 (RIM2) pro-
teins may represent another possible molecular mechan-
ism capable of inhibiting Ca**- and voltage-dependent
inactivation of Cay1.3 channels in IHCs [114].

Similarly to stereociliary Ca®*, presynaptic Ca**
domains are presumably spatiotemporally restricted by
the presence of mobile, proteinaceous Ca** buffers cal-
retinin, calbindin and parvalbumin, which have been
found in a variety of cochlear and vestibular hair cells
with concentration in the mM range [61,115]. How-
ever, discrepancies regarding both the amount and kin-
etic properties of such buffers in different hair cells
suggest that their exact role and scope of function
need to be analyzed further [116]. It has also been sug-
gested that the restriction of the available presynaptic
space due to the presence of the ribbon and its asso-
ciated vesicles defines a small cytoplasmic volume
where Ca”* buffers are saturated, thus permitting fast
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and large Ca®" rises near release sites beneath the syn-
aptic ribbon [99].

The stimulus-secretion coupling between the inward
Ca®* current and transmitter release has been investigated
by measuring the increase in the hair cell membrane cap-
acitance (AC,,) following depolarization-triggered Ca**
entry [103,117-120]. In these studies, at least two kinetic
components of exocytosis are commonly distinguished: a
fast initial component, which saturates within a few milli-
seconds, and one or more slower components, triggered
by prolonged (tens of ms to s in duration) depolarizing
steps; for a summary of different studies on size and kinet-
ics of synaptic release components in hair cells see [91].
The fast component is generally thought to represent the
release of a ready releasable pool (RRP) of vesicles which
might co-localize with Ca* channels [121-123]. However,
data establishing a direct link between vesicle location and
release pools are limited [91].

Transmitter  release  evoked by  membrane
depolarization over the physiological voltage range (be-
tween the resting potential and ~-20mV [81]) shows a
linear dependence on Ca”* influx , at least in high fre-
quency IHCs [103,118,120,124]. This linear relationship,
which extends to the postsynaptic current [98,124], is
believed to allow the synapse to respond efficiently to
both small and large stimuli, thus broadening the hair
cell’s dynamic range. Transmitter release shows a higher
order (3"-5™ power) Ca**-dependance when the hair
cell is depolarized to positive holding potentials [124] or
when exocytosis is triggered by Ca** uncaging (7 pM to
110 uM) [117]. Recently, using real-time capacitance
measurements to identify saturable pools of vesicles, a
superlinear release component requiring recruitment of
vesicles to release sites has been identified, leading to
the suggestion that Ca®*-dependent vesicle trafficking is
responsible for this movement, which is required for
hair cell synapses to maintain high rates of sustained
vesicle fusion [125].

The identification of the molecular composition of the
synaptic machinery of the hair cell remains a major chal-
lenge. The hair cell synapse lacks the most common pro-
tein involved in exocytosis, for example complexins,
synapsins and synaptophysins [126-128]; moreover, even
though neuronal SNARE proteins are expressed in IHCs,
they may not be required for vesicle fusion at the IHC rib-
bon synapse [129]. A major gap in our understanding of
the components of the synaptic ribbon relates to the iden-
tification of the Ca®* sensor. Synaptotagmins (Syt) I-II are
the conventional Ca®*-sensing proteins at neuronal synap-
ses [130], but their role at the hair cell ribbon synapse is
debated. Though earlier studies suggested that Syt I-II
were not present in mature IHCs [126], more recent work
has shown that they are transiently expressed in the coch-
lea [131-133]. However these studies came to different
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conclusions about Syt I-II importance for IHC synaptic
transmission, since some of them suggest their involve-
ment (Sytl: [131,132], Syt II: [132]) while others ex-
clude it (Sytl: [133]. Syt II: [131, 133]). The observation
that otoferlin deficient mice (Otof”’") are profoundly
deaf [134], and show impaired synaptic development
and lack of exocytosis [135] prompted the proposal that
otoferlin is the major Ca>* sensor of synaptic vesicle fu-
sion in cochlear hair cells [135,136]. However, even
though recent evidence has shown that otoferlin may
be involved in synaptic vesicle replenishment [137], its
role as the Ca* sensor for exocytosis remains indeter-
mined. Indeed, otoferlin is not found in IHCs of a
hypothyroid rat model, even though those IHCs exhib-
ited Ca**-dependent exocytois [132,138]. Moreover, an-
other study showed that Ca**-evoked exocytosis in the
first postnatal days (P0O-P4) is both otoferlin- and Syt-
independent [131]. Finally, the transition from a non-
linear to a linear order of exocytotic Ca**-dependance
observed before and after the onset of hearing doesn’t
correlate with the qualitatively similar distribution of
otoferlin found in immature and mature IHCs
[119,139], and seems to depend on another molecular
factor, which has been recentely identified as Synapto-
tagmin IV, an unconventional synaptotagmin [132].

Besides Ca®* influx through voltage-gated Ca®* chan-
nels of the basolateral plasma membrane, two other
mechanisms, both implicated in the efferent control of
hair cell function [140,141], may promote an increase of
intracellular free Ca®* concentration ([Ca®'],) at the
basal pole of the hair cell.

The first mechanism is Ca®* entry through a9a10
nicotinic acetylcholine receptors (nAChR) [142,143],
which activates, via calmodulin, a hyperpolarizing
small conductance potassium current (SK, for review,
see [144]). The hyperpolarizing SK current (i) is
required for sustaining the action potential activity
and modulating action potential frequency when acti-
vated by ACh in immature IHCs [145-147] and (ii)
mediates fast Ca>*-dependent decrease of axial stiff-
ness in OHCs [148,149].

The second (interrelated) mechanism is calcium-
induced calcium release (CICR), an autocatalytic mech-
anism whereby [Ca®*]; elevation induces Ca®* release
from internal stores through channels such as inositol-1,
4,5-trisphosphate (IP3) receptors (IP3Rs) or ryanodine
receptors (RyRs) [150]. CICR has been investigated in
mammalian IHCs [151], OHCs [149,152-156] as well as
in vestibular hair cells [157]. In particular, in IHCs, Ca**
release from intracellular store has been found to modu-
late the fast outward Ca*' activated K* current (BK)
[86,158], thus suggesting that RyRs and BK channels are
functionally coupled and act to suppress fast neurotrans-
mission [158].
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Ca”* signalling in cochlear non-sensory cells

As mentioned above, cochlear non-sensory cells form
vast syncytia coupled by gap junction channels that, in
the mammalian cochlea, are formed primarily by con-
nexin26 and connexin30 protein subunits [159,160], re-
spectively encoded by DNFB1 genes GJB2 and GJ/B6
(reviewed in refs. [161,162]). The fact that DFNBI is the
most common form of inherited deafness in Caucasian
populations highlights the importance of connexins for
hearing (reviewed in ref. [163]). Connexin26 and con-
nexin30 share 77% amino acid identity and may assem-
ble to form heteromeric and heterotypic gap junction
channels [164-166]. To date, that of a human con-
nexin26 gap junction channel is the only structure
resolved by X-ray diffraction (at 3.5 A resolution) [167],
whereas the structure of connexin30 channels has been
recently inferred by a combination of homology model-
ing and molecular dynamics [168].

Mouse models confirmed that connexin26 and con-
nexin30 are essential for auditory function, as well as
survival and development of the organ of Corti [169-
175]. Though instrumental, these animal models also
revealed some critical gaps in our current understanding
of the role played by connexins in the inner ear and the
etiology of deafness due to absent or mutated connexins.
Thus, deafness and lack of endocochlear potential in
connexin30(-/-) mice correlate with: (i) disruption of
the endothelial barrier of the capillaries supplying the
stria vascularis before endocochlear potential onset; (ii)
significant down-regulation of betaine—homocysteine
S—methyltransferase and (iii) local increase in homocyst-
eine, a known factor of endothelial dysfunction [176],
with no obvious link to gap junction channel function.
In the same vein, the hypothesis that connexin dysfunc-
tion impacts primarily on K" recycle is challenged by the
identification of connexin26 human recessive deafness
mutants, e.g. V84L [177], that are capable of forming
functional channels [178]. Studies performed in model
cells indicate that connexin26 V84L mutant channels are
as permeable to K* as the wild type channels, whereas it
is the transfer of the Ca®*—mobilizing second messenger
IP; (and possibly of other key metabolites too) that is
impaired [179,180]. Therefore the permeability of con-
nexin gap junction channels to metabolites [181,182],
and not simply to small inorganic ions, is likely to play
an important role in development, physiology and eti-
ology of connexin-related hearing impairment. For an in
depth analysis of several other difficulties met by the
idea that K* flux through the hair cells dominates the
supply of K* to the stria vascularis to form a closed K*
cycle see refs. [183,184].

While the exact function of connexins expressed by non—
sensory cells of the inner ear remains unclear, it is import-
ant to mention that they also form unpaired connexons, i.e.
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non-junctional connexin hemichannels [185-187]. Experi-
ments performed with a combination of genetic interfer-
ence in four different mouse lines and ATP biosensors
[188] apposed to cochlear non-sensory cells indicate that
connexin26 and connexin30 protein subunits form func-
tional hemichannels, which can be detected at the endo-
lymphatic surface of the sensory epithelium with CELAb
antibodies [189], and release ATP into endolymph under
physiological conditions [190,191]. ATP release had been
previously proposed on the ground of experiments in which
mechanical stimulation was applied by gently pipetting
(once per 3—4 s with a 20 pl pipette) a solution containing
glass beads (with a diameter of 30-50 pm) over a cochlear
explant for a 15-min period [192]. The binding of extracel-
lular ATP to G—protein coupled P2Y, and P2Y, receptors,
also expressed on the endolymphatic surface of the devel-
oping sensory epithelium, activates phospholipase—C
dependent generation of IP; [179,193,194]. While gap junc-
tion channels allow IP; diffusion through these coupled
cells, IP3 binding to its receptors (IP3R) promotes Ca*" re-
lease from the endoplasmic reticulum raising the cytosolic
free Ca** concentration ([Ca®*];). The probability of con-
nexin hemichannel opening is a bell-shaped function of
the [Ca®'],, peaking at ~500 nM [195]. This is a key feature
that enables the propagation of Ca®* signals as regenerative
and coordinated intercellular Ca>* waves, with peak ampli-
tude of ~500 nM, sustained by ATP—induced ATP-release
[2,179,190,191,193,194]. Mitochondria function as spatial
Ca®* buffers and play a significant role in regulating the
spatio—temporal properties of these intercellular Ca**
waves [196]. This was demonstrated by blocking mitochon-
drial Ca** uptake by dissipating the mitochondrial mem-
brane potential using the protonophore carbonyl cyanide
m-—chlorophenylhydrazone (CCCP) and oligomycin, an in-
hibitor of oxidative phosphorylation, or using Ru360, an in-
hibitor of the mitochondrial Ca®" uniporter, which
enhanced the peak amplitude and duration of ATP-
induced transients. The numerous roles played by extracel-
lular ATP in the adult cochlea are reviewed in ref. [197];
the rest of this article focuses on some critical signalling
events that occur during maturation of cochlear tissue.
Rhythms are ubiquitous at all levels of biological
organization. At the cellular level, they involve biochem-
ical oscillations that modulate the concentration of key
metabolic substrates and second messengers. Among
these, rhythmic variations in the [Ca®*]; have been found
in a variety of cells and shown to arise spontaneously or
after stimulation by hormones or neurotrasmitters. In
non-sensory cells of the lesser epithelial ridge, ATP—
dependent [Ca®*]; oscillations occur (i) as consequence
of intercellular Ca®>* wave propagation, (ii) sustained
ATP delivery in the submicromolar range or (iii) during
pharmacological inhibition of ectonucleotidases, a ma-
nipulation which highlights the tonic release of ATP
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from these cells [190] and their sensitivity to ATP
degradation by ectonucleotidases [198]. In rat cochlear
explants [199,200], as well as in mouse organotypic
cochlear cultures [175], [Ca®*]; transients due to release
of ATP in rhythmic bursts have been reported also for a
class of non—sensory cells of the greater epithelial ridge
(first described by Kolliker) which transiently populate
the sensory epithelium from spiral limbus to IHC
[201,202]. These periodic Ca®* signals can be blocked by
apyrase, as shown for the propagation of intercellular
Ca®" waves in the lesser epithelial ridge. Furthermore,
the frequency of spontaneous [Ca®*]; transients is signifi-
cantly decreased by purinergic receptor antagonists
PPADS (50 uM) and suramin (150 uM), the gap junction
channel inhibitor carbenoxolone (100 pM) as well as flu-
fenamic acid (50 pM), a bona—fide inhibitor of connexin
hemichannels. Both the propagation range of intercellu-
lar Ca** waves in the lesser epithelial ridge and the fre-
quency of spontaneous [Ca®']; transient in the greater
epithelial ridge increase when the extracellular free Ca**
concentration ([Ca®'],) is decreased [190,199,200], and
this manipulation is known to increase the open prob-
ability of connexin hemichannels [203-206]. Finally, focal
UV photolysis of a caged intracellular IP; precursor in
the greater epithelial ridge evokes Ca®* transients similar
to those that arise spontaneously in this region [191].
Thus it seems reasonable to hypothesize that release of
ATP through connexin hemichannels activates similar
IP; receptor—dependent signal transduction cascades in
non-sensory cells of the lesser and the greater epithelial
ridge.

These findings are particularly interesting if viewed from
the perspective that connexin dysfunction may ensue in a
deafness phenotype through a bidirectional link to
impaired ATP—dependent Ca** signaling in the develop-
ing cochlea. This tenet is exemplified by a study of hearing
loss based on the substitution of an evolutionarily con-
served threonine by a methionine residue at position 5
near the N-terminus of connexin30 (connexin30 T5M)
[207]. In connexin30™*™**M knock in mice, obtained by
homologous recombination in mouse embryonic stem
cells, expression of the mutated connexin30 T5M protein
is under the control of the endogenous connexin30 pro-
moter [175]. When probed by auditory brainstem record-
ings, connexin30™™TM mice exhibit a mild, but
significant increase in their hearing thresholds of about 15
dB at all frequencies. Western blot analysis of adult inner
ear tissue shows significantly down-regulated expression
levels of connexin26 and connexin30. In the developing
cochlea, electrical coupling, probed by dual patch—clamp
recordings, is normal; however, transfer of the fluorescent
tracer calcein between cochlear non-sensory cells is
reduced, as is the intercellular Ca>* signalling due to spon-
taneous ATP release from connexin hemichannels [175].
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Previous studies had noted that ATP—dependent Ca**
oscillations in non—sensory cells of the cochlear feed—back
on connexin expression and participate in the coordinated
regulation of connexin26 and connexin30 through NF-kB
[208,209] (nuclear factor kappa-light—chain—enhancer of
activated B cells). Of notice, these articles also show
that gene delivery with recombinant bovine adeno asso-
ciated virus (BAAV) vectors restores connexin expres-
sion and rescue intercellular coupling and Ca**
signaling in cochlear organotypic cultures from mice
with defective expression of connexin26 and connexin30
[208,209]. A widely held hypothesis is that information
is encoded mainly by the frequency of [Ca®*]; oscilla-
tions [210,211], however, a possible role of amplitudes
and duration in signal transduction has been discussed
[212,213]. It has also been argued that amplitude modu-
lation and frequency modulation differentially regulate
distinct targets [214]. Note that NF-kB is just one of
the several Ca’*—dependent transcription factors used
by non-excitable cells [215], thus future research will
undoubtedly uncover more links between these molecu-
lar actors, hearing acquisition, and its failure due con-
nexin dysfunction.

Conclusions

The investigation of Ca”* signaling in the context of the
inner ear is a rapidly growing and accelerating field of
research. Our knowledge about the molecular details is
rapidly growing with new gene products identified as
key players of mechanotransduction, while more and
more molecules have been added to the list of those
involved in synaptic transmission. Finally the intercon-
nectivity of connexin expression and signaling pathways
in the developing cochlea constitutes a key feature of
the vast non-sensory cell syncitia which starts to emerge
as fundamental part of the intricate machinery that fos-
ters the acquisition of hearing. Despite some impressive
proceedings in recent years, we are surely not running
out of open questions.
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