Skip to main content
Fig. 7 | Cell Communication and Signaling

Fig. 7

From: Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation

Fig. 7

Model. The role of StarD13 in 2D and 3D migration in lung adenocarcinoma cells. The model depicts the cyclical inhibition of StarD13 of RhoA (temporal regulation) at the leading edge of migrating cells as well as the tail. This allows the cell to detach at the tail through the dissolution of focal adhesions once RhoA inactivates. At the leading edge, StarD13 inactivates RhoA which allows Rac1 to activate leading to the formation of new point contacts. RhoA then cycles back to its active form, attenuating Rac1 activity and leading to the maturating of point contacts into focal adhesions. This allows the protrusion to constructively pull the cell forward in its 2D direction. In 3D, StarD13 potentially plays a spatial inhibitory role for Cdc42 keeping its activity concentrated in invadopodia

Back to article page