Skip to main content
Fig. 2 | Cell Communication and Signaling

Fig. 2

From: SRC inhibition prevents P-cadherin mediated signaling and function in basal-like breast cancer cells

Fig. 2

Dasatinib treatment inhibits the in vitro functional activity induced by P-cadherin expression. a Western blotting for pSRC(Tyr416), total Src, P-cadherin, E-cadherin and p120ctn in P-cadherin overexpressing cells after dasatinib treatment (100 nM) for 48 h. Protein levels of β-actin were analyzed and used as the loading control. b Representative experiment from a wound healing migration assay, in both P-cadherin overexpressing BCC (MCF-7/AZ.Pcad and BT20), treated with 100 nM of dasatinib or DMSO for 24 h. c Fold change in the number of invasive cells, evaluated by the matrigel invasion assay for both MCF-7/AZ.Pcad and BT20 treated with DMSO or 100 nM of dasatinib. d Zymography for MMP2 activity and Western blotting for sP-cad, using the conditioned medium from cells treated with DMSO or 100 nM of dasatinib for 48 h, in both MCF-7/AZ.Pcad and BT20 BCC models. e Mammosphere forming assay was performed for both cell models. The P-values indicate the statistically significant difference between DMSO and dasatinib treated cells, in both P-cadherin BCC models. f Average values of Work (J), representing the cell-cell adhesion strength, of both BCC cancer cell models treated with DMSO and dasatinib, using AFM Force Spectroscopy analysis. g Box-plot quantification of the length (μm) and h number of invasive protrusions of MCF-7/AZ.Pcad spheroids, treated with DMSO or 100 nM dasatinib, for 24 h. P-values < 0.05 were considered statistically significant. i Representative Images of time-lapse microscopy for BCC spheroids embedded in collagen type I, for MCF-7/AZ.Pcad treated with DMSO and dasatinib. Scale bar = 50 μm

Back to article page