Skip to main content
Figure 5 | Cell Communication and Signaling

Figure 5

From: Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes

Figure 5

The blockade of Ca2+entry to the mitochondria reduces insulin response. A) Western blot of p-Akt (Ser473) and Akt (upper) and densitometric analysis (lower) of cardiomyocytes treated with ruthenium red (Ru 10 μM for 30 min) either stimulated with insulin (100 nM for 15 min) or left unstimulated. Data are expressed as mean ± SEM, N = 6, *P < 0.05 vs. insulin. B) Western blot of p-Akt (Ser473) and Akt (upper) and densitometric analysis (lower) of cardiomyocytes transfected with a siRNA Ctrl or against MCU either stimulated with insulin (100 nM for 15 min) or left unstimulated. Data are expressed as mean ± SEM, N = 3, *P < 0.05 vs. insulin. C) Glucose uptake of cardiomyocytes treated with ruthenium red (Ru 10 μM for 30 min) either stimulated with insulin 100 nM for 15 min or left unstimulated. Cytochalasin B (Cyto B) was used as a negative control. Data are expressed as mean ± SEM, N = 7, **P < 0.01 vs. control, ns: non significant. D) Oxygen consumption rates of cardiomyocytes treated with ruthenium red (Ru 10 μM, 30 min prior stimuli) or xestospongin C (XeC, 100 μM, 30 min prior stimuli) either stimulated with insulin (100 nM for 3 h) or left unstimulated. Data are expressed as mean ± SEM, N = 3, **P < 0.01 vs. control ns: non significant. E) qPCR for Hk2, Pfkfb2, Slc2a1, Slc2a4 and Pdk4 mRNA levels of cardiomyocytes treated with ruthenium red (Ru 10 μM for 30 min) or xestospongin C (XeC, 100 mM, 30 min prior stimuli) either stimulated with insulin (100 nM for 15 min) or left unstimulated. Data are expressed as mean ± SEM, N = 4, *P < 0.05 vs. Ctrl and #P < 0.05 vs. Insulin.

Back to article page