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Abstract

The investigation of biological systems highly depends on the possibilities that allow scientists to
visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-
protein coupled receptors represent a family of very dynamic and highly regulated transmembrane
proteins that are involved in various important physiological processes. Since their localization is
not confined to the cell surface they have been a very attractive "moving target" and the
understanding of their intracellular pathways as well as the identified protein-protein-interactions
has had implications for therapeutic interventions. Recent and ongoing advances in both the
establishment of a variety of labeling methods and the improvement of measuring and analyzing
instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging.
The illumination of their complex life cycle, which includes receptor biosynthesis, membrane
targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new
insights into the relationship between spatial receptor distribution and function. This review covers
the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-
fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and
protein-tags are described and their major applications concerning the GPCR life cycle are
presented.

Review

Introduction

G-protein coupled receptors (GPCRs) are integral mem-
brane proteins, consisting of a single polypeptide chain
with seven transmembrane domains (TMD). They control
and influence a diversity of physiological functions by
mediating the signal of a wide variety of stimuli such as
peptide hormones, neurotransmitters, neuropeptides,
autocrine factors and even photons. Thereby the ligand
transmits its activity to an intracellular signal through acti-
vation of a heterotrimeric guanosine triphosphate-bind-
ing protein (G-protein) by the receptor. As a result, a
broad range of downstream intracellular signals are acti-
vated, leading to both short-term effects (e.g. changes in

intracellular calcium levels) and long-term effects (e.g.
gene transcription). Representing the largest family of
transmembrane signaling molecules in the human
genome, GPCRs are a very important class of therapeutic
targets for the pharmaceutical industry and nearly half of
the drugs currently in use act on these biomolecules.

In addition to the binding of ligands and G-proteins,
GPCRs interact with a broad range of other proteins with
potential roles specifically in receptor biosynthesis, distri-
bution, signaling, desensitization, clustering, internaliza-
tion, trafficking and degradation. These include other
GPCRs, GPCR kinases (GRKs), second-messenger-
dependent kinases, arrestin molecules, molecular chaper-
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ones, receptor-activity-modifying proteins (RAMPs) and
PDZ-domain-containing proteins [1]. For an excellent
review that summarizes these activities including sche-
matic figures see [2]. The relationship between agonist-
induced activation of receptors, receptor translocation
and cell function has previously been shown to be diffi-
cult to investigate because it is a dynamic process and
localization of receptors by standard biochemical meth-
ods offers insufficient high-resolution spatial informa-
tion. In addition, the expression levels of GPCRs are
generally low in native systems, which make the detection
even more difficult. But elucidating these interactions will
help to understand their cellular functions in order to
develop new and improved pharmaceuticals. Since there
is evidence that several peptide hormone receptors are
over-expressed in various human cancer cells it has been a
challenge to develop regulatory, receptor-binding pep-
tides as agents for tumor diagnosis and therapy. However
receptor-mediated internalization is a prerequisite for this
type of study [3]. Therefore novel methods to study recep-
tor localization and function are needed as well as the
extension of techniques to visualize and quantify involved
biomolecules and processes with a spatiotemporal high-
resolution and sensitivity [4].

Classically, receptors have been studied using radioactive
isotopes, enzyme-linked immunosorbent assays (ELISAs)
or functional responses in isolated tissue or organ prepa-
rations. The disadvantages of these methods, such as radi-
oactive hazards and the limitations of studying the
molecular dynamics of receptor activation have hindered
advancements in receptor research. Biochemical methods
for the investigation of protein-protein-interactions, such
as co-immunoprecipitation assays, Western-blot analysis,
"pulldown" approaches or yeast two-hybrid experiments
have several drawbacks, e.g. artifacts owing to harsh tech-
niques that are required to isolate membrane proteins,
failure to identify components of a protein complex or
false-positive as well as false-negative results. Therefore,
non-invasive, real-time imaging methods applied to liv-
ing cells have become very important in cell biology.

Fluorescence techniques that allow imaging of reporter
gene expression, protein trafficking and monitoring of
many dynamic biochemical signals have become feasible
through the development of novel fluorophores as well as
through the improvement of fluorescence instrumenta-
tion and advanced data analysis methods [5]. They are
considered superior over other existing molecular detec-
tion technologies because of their enhanced sensitivity,
minimal perturbation, multiplicity of measurable param-
eters and suitable time scales. This allows the analysis of
several biologically relevant molecular processes [6]. Flu-
orescence is the most sensitive spectroscopic method.
Reproducible signals from samples containing less than 1
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nM concentrations of some fluorophores can be quanti-
fied. The signal can be analyzed by different methods,
including its intensity, lifetime, energy (wavelength) and
rotational freedom (polarization or anisotropy), to reveal
different aspects of a structure, interaction, mechanism or
process [7,8]. Furthermore, fluorescence is a non-destruc-
tive phenomenon, so any signal change can be monitored
as a function of time to determine its kinetics. Of course it
has to be considered that some of the fluorophores might
be toxic in certain systems, either themselves or by gener-
ating free radicals.

Techniques such as scanning confocal microscopy (SCM)
and fluorescence correlation spectroscopy (FCS) have
offered the establishment of assays at the single cell [9]
and the single molecule level [10]. Confocal and multi-
photon microscopes coupled with sophisticated image
analysis software packages are becoming affordable. The
development of very high resolution, high sensitivity cam-
eras and 3D deconvolution methods advances the area of
quantitative 4D imaging [11]. Microscopy methods such
as total internal reflection fluorescence microscopy
(TIRFM) and interference reflection microscopy (IRM)
can be used for selective imaging of the plasma membrane
of cells, e.g. to study exo- and endocytic pathways or
plasma membrane dynamics during internalization [12-
14].

Fluorescent labeling reagents are an essential component
of a huge industry built on sensitive fluorescence detec-
tion and reagents with close to maximum theoretical
brightness are available in many different colors. Hun-
dreds of small organic dyes for covalent labeling of mac-
romolecules have been developed and industrially
optimized in their wavelength range, brightness, photo-
stability and reduced in self-quenching. Strategies have
included extension of double-bond conjugation, rigidifi-
cation through extra rings and decoration with electron-
withdrawing or obligatorily charged substituents such as
fluorines or sulfonates [15,16]. Labeling of proteins with
fluorescent probes or affinity reagents has facilitated in
vitro studies of protein structure, dynamics and protein-
protein-interactions. However, traditional methods of
protein labeling are often inadequate for in vivo studies,
because they require purification of the protein, chemical
labeling, re-purification and re-introduction into cells by
invasive methods such as micro-injection or electropora-
tion. These limitations have spawned efforts to label pro-
teins in living cells or tissues non-invasively.

Appropriate methods for the study of receptor trafficking
and regulation in native systems have not been available
up to now. The limited axial (z) resolution of fluorescence
and confocal-based microscopy impedes the imaging of
receptors in individual cells deep within living tissues. The
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recent development and availability of fluorescent anti-
bodies, fluorescent ligands and recombinant DNA tech-
nologies to label GPCRs in living cells provide new
insights into their "real life" and "fate". Studies with
GPCRs in living dissociated hepatocytes and vascular
smooth muscle cells revealed quantitative data on recep-
tor localization and translocation, which highly corre-
lated with results obtained with fluorescent ligands or
heterologous expression systems [9].

Subcellular distribution patterns have become an essen-
tial component of GPCR characterization that might have
multiple regulatory consequences. For example, intracel-
lular receptor pools that are rapidly transported to the cell
membrane upon activation have been suggested to reduce
desensitization and/or potentiate signaling. Many recep-
tor subtypes have been shown to differ in their subcellular
localization within the same cell type and particular
receptors might localize differently depending on the cell
type in which they are expressed. Unraveling these traf-
ficking pathways and heterologous interactions by live
imaging methods is strongly supported by the existence of
various markers for intracellular compartments and path-
ways, as well as by inclusion of inhibitors for these proc-
esses, to fully understand the complex network [17].

This review will focus on the existing technologies to track
GPCRs in living cells, such as fluorescent ligands and anti-
bodies, auto-fluorescent proteins (AFPs) as well as pep-
tide- and protein-tag technologies, such as the Lumio™- or
SNAP™-tag (Figure 1). We aim to cover the major applica-
tions of these labeling methods in fluorescence imaging in
order to provide a survey on the current state-of-the-art.

Methods to label and visualize GPCRs

Fluorescent antibodies

Immunohistochemistry (IHC) is based on an antigen-
antibody reaction. In the case of GPCR labeling the anti-
gen is the receptor protein or a certain epitope tag and the
antibody is a glycoprotein targeting a particular recogni-
tion sequence. In most cases the protein of interest (POI)
is labeled with a primary antibody followed by amplifica-
tion with a secondary antibody that is conjugated to a
small organic dye or an enzyme. Alternatively, primary
antibodies can also be directly conjugated to fluorophores
or enzymes [18,19]. This is especially useful when anti-
bodies are injected into living cells or when the increase of
spectral diversity is required to analyze multiple proteins.

The availability of specific and potent antibody reagents is
essential to obtain reliable and interpretable results in
IHC studies. Accordingly, it has to be paid attention
whether antibodies recognize the naturally folded protein
as well. Antibodies against receptors can be generated in
animals, e.g. rabbits, chickens or mice, through immuni-
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Existing technologies to track GPCRs in living cells,
represented at the same scale. Representation of a
GPCR based on the structure of sensory rhodopsin Il (A;
Protein Data Bank identifier (PDB ID), 1GUE), the structure

of the peptide ligand porcine neuropeptide Y (B; PDB ID,
1F8P), the structure of an auto-fluorescent protein, namely
the S65A/Y66F GFP variant (C; PDB ID, 2HGD), the struc-
ture of an immunoglobulin gamma (D; PDB ID 1I1GT), the
Lumio™.-tag (E), the SNAP™-tag based on the structure of
the human O#¢-alkylguanine-DNA alkyltransferase, (F; PDB
ID, 1EHS).

zation with cells bearing receptors at their surface, injec-
tion of affinity-purified receptor or immunization with
synthetic peptides derived from the nucleotide sequence
of receptor genes [20]. In contrast to polyclonal antibod-
ies (PAbs), monoclonal antibodies (MAbs) are directed
against a single epitope of an antigen, which makes them
extremely selective. The established phage display tech-
nology provides a more effective tool for their generation
compared to hybridoma technology or immunization
[21].

Receptor cloning and recombinant methods offer the
over-expression of wild-type receptors or the expression of
mutant forms that bear a short foreign epitope tag (Table
1), which is usually located in the extracellular space and
is recognized by a specific antibody [22-34]. These epitope
tags overcome the problem, that suitable antibodies are
not available for all GPCRs. Another advantage of anti-
epitope antibodies is that antibodies directly recognizing
receptor regions may trigger mechanisms, e.g. signal-
transduction, internalization or redistribution that are
normally activated by the natural ligand or other effector
molecules. This might be a disadvantage as the activity of
the antibody might influence the cellbiology and read-out
of the results. The accuracy of protein recognition depends
on the specificity of the primary antibody that should be
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Table I: Important epitope tags used on GPCRs for IF studies
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Epitope tag Sequence Remark Reference
HA YPYDVPDYA peptide from human influenza hemagglutinin protein [22-26]
FLAG DYKDDDDK synthetic peptide [27-29]

T7 MASMTGGQQMG major capsid protein of the T7 phage [30,31]
c-myc EQKLISEEDL human c-myc gene protein [32]

Hisg or His|g H)er1o polyhistidine [33]

VSV-G YTDIEMNRLGK vesicular stomatitis virus glycoprotein [34]

validated using parallel methods. The tag recognition can
be enhanced by introducing more than one repeat of the
used epitope [35]. The antigenic epitope can also be use-
ful for other biochemical applications on GPCRs, such as
(co-)immunoprecipitation, immobilization and purifica-
tion.

In the field of GPCRs immune fluorescence (IF) provides
the possibility to visualize the receptors in the membrane
of living or fixed cells, either with antibodies against extra-
cellular receptor regions [36-40] or an N-terminally intro-
duced epitope tag. Intracellular receptor segments, C-
terminal epitope tags or intracellularly located receptors
are only recognized after cell fixation and permeabiliza-
tion and lead to visualization of membrane-localized and
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Figure 2

Visualization of GPCRs by fluorescent antibodies.
Antibodies against extracellular receptor regions or N-termi-
nal epitope tags can be used to visualize GPCRs in non-per-
meabilized cells (A, above), intracellularly located receptors,
intracellular receptor segments or C-terminal epitope tags
are only recognized after cell permeabilization (A, below).
Either the primary antibody is fluorescent or a secondary
antibody carrying a fluorophore is applied in a second step.
Localization of the N-terminally HA-tagged human Y recep-
tor in HEK293 cells (B and C; HA-tagged receptor in red,
nuclei in blue, bar represents 10 um). The receptor can be
visualized in the cell membrane of both non-permeabilized
(B) and permeabilized cells (C) and intracellularly only within
permeabilized cells (C).
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subcellular-localized receptors (Figure 2) [41,42]. For
confirmation of results it may also be useful to detect an
N-terminal and another C-terminal tag in parallel [43].

Auto-fluorescent proteins (AFPs)

The discovery and isolation of the green fluorescent pro-
tein (GFP) from the light-emitting organ of the jellyfish
Aequorea victoria in 1962 and the gene cloning of the com-
plementary DNA (cDNA) initiated the broad use of fluo-
rescence imaging in cell biology [44,45]. GFP is a 238
amino acid protein that consists of 11 anti-parallel B-
strands surrounding a central a-helix to form a barrel-
such as p-can structure [46]. Its natural function is to con-
vert the blue chemiluminescence of the Ca2+-sensitive
photo-protein aequorin into green light [47]. The tripep-
tide chromophore is localized in the centre of the protein
and therefore well protected from the environment. The
main reason for the success of GFP is its own nature: it is
auto-fluorescent and the chromophore is auto-catalyti-
cally generated. Thus GFP does not require any additional
substrates or co-factors and the fluorescence is not species
specific.

The heterologous expression of GFP allows its application
as a reporter molecule or the genetic labeling of biomole-
cules and therefore their direct visualization in vivo [48].
Standard genetic-engineering allows the covalent labeling
of proteins, subcellular compartments, cells of interest
and specific tissue regions by using the protein expression
system of the cell. Transfection and transgenic techniques
enable the delivery of exogenous DNA more easily than
the delivery of dyes to cells and even to whole organisms
[49]. However, early variants of GFP were frequently mis-
folded and led to the aggregation of the fusions. In addi-
tion, GFP is a full-sized protein and therefore its fusion
may interfere with the expression, function and activity of
the protein of interest [50,51]. Creating a successful fusion
protein requires the maintenance of the fluorescence of
GFP, the functionality of the protein of interest (POI) and
the integrity of the chimeric protein. This can be highly
dependent on the length and sequence of the linker
between GFP and the POI and should be taken into
account and optimized for each specific application. To
avoid difficulties in protein folding, mostly N- and C-ter-
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minal fusions are generated, but the cDNA of the fluoro-
phore can also be integrated into the DNA sequence of
many biomolecules [52]. However, GFP turned out to be
a rather inert molecule which in most cases did not affect
the functional integrity of its fusion partner, which might
be explained by its compact molecular structure.

The generation of spectral GFP variants as well as the dis-
covery of novel GFP-like proteins from Anthozoa and Dis-
cosoma (DsRed) [53-61] has significantly expanded the
variety of colors available for cell biological applications
from the blue to the red range of the visible spectrum
(Table 2) and many expression plasmids designed to gen-
erate C- or N-terminal fusions with the fluorophore are
commercially available [62]. Laboratory mutagenesis has
further diversified the spectral properties of fluorescent
proteins (FPs), increased their brightness and folding effi-
ciencies and decreased oligomerization [63-66]. These
variants allow the simultaneous imaging of different pro-
teins co-expressed as GFP fusions and the fluorescence
from at least four analogues can be fully separated
through the development of imaging instrumentation
with appropriate filter sets or excitation laser lines and
software that facilitates linear un-mixing of the fluores-
cence signals [67,68].

Fluorescent proteins are a powerful tool for the investiga-
tions of GPCRs in living cells (Figure 3). Many GPCR sys-
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tems have been studied so far by using GFP or its variants,
since this is generally the first method of choice for non-
invasive imaging in order to monitor gene expression,
subcellular distribution and trafficking [62].

The development of advanced auto-fluorescent proteins,
such as photo-activatable, photo-switchable and photo-
convertible AFPs [69], fluorescent sensors [70], timer
[71,72] and split AFPs [73] provides novel applications
for fluorescent labeling in vivo for studying the biosynthe-
sis, expression, localization, movement, activity and turn-
over of proteins as well as the direct measurement of cel-
lular parameters and organelle functions at the single cell
and even down to the single molecule level [74].

With the development of resonance energy transfer (RET)
techniques such as FRET [75,76], bioluminescence reso-
nance energy transfer (BRET) [77] and the bimolecular
fluorescence complementation (BiFC) [78,79] approach
the opportunity arose to gain insights into protein-pro-
tein-interactions in living cells by using the appropriate
pairs of autofluorescence proteins.

Peptide- and protein-tags

The search for alternatives to AFPs led to the ongoing
development of chemical labeling strategies for the selec-
tive and site-specific coupling of fluorophores to geneti-
cally encoded peptide- or protein-tags [80-90], which

Table 2: Most important monomeric GFP variants and their spectral properties

Protein Aex Mem Relative brightness Relative photostability Reference/source
[nm] [nm] [% of EGFP] [t,2in s] [66]
Blue fluorescent proteins
T-Sapphire 399 511 79 25 [53]
Cyan fluorescent proteins
mCFP 433 475 39 64 [54]
Cerulean 433 475 79 36 [55]
CyPet 435 477 53 59 [56]
Green fluorescent proteins
EGFP 484 507 100 174 BD Biosciences Clontech
Emerald 487 509 116 0.69 [48], Invitrogen
Yellow fluorescent proteins
EYFP 514 527 151 60 [48], Invitrogen
Venus 515 528 156 I5 [57]
mCitrine 516 529 174 49 [58]
YPet 517 530 238 49 [56]
Orange and red fluorescent proteins
mKO 548 559 92 122 [59], MBL Intl.
mOrange 548 562 146 9 [60]
tdTomato 554 581 283 98 [60]
DsRed-monomer 556 586 10 16 BD Biosciences Clontech
mStrawberry 574 596 78 15 [60]
mCherry 587 610 47 96 [60]
mPlum 590 649 12 53 [61]
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Figure 3

Visualization of GPCRs by auto-fluorescent proteins.
Commonly, AFPs are fused to the C-terminus of the GPCR
(A). Localization of hY R-EYFP in HEK293 cells (B; receptor
in yellow, nuclei in blue, bar represents 10 um). Receptor
expression as well as membrane and subcellular GPCR local-
ization can be easily followed, since the fluorescence is gen-
erated in vivo and no additional labeling is reqired.
Localization of human Y receptor C-terminally fused to
ECFP in HEK293 cells stably expressing hY R-EYFP (C; hYR
in green, hY|R in red, bar represents |0 pm). The spectral
properties of AFPs allow receptor co-expression and co-
localization studies.

expanded the utility of in vivo protein imaging (Table 3)
[91].

Concerning the binding mechanism most labeling tech-
niques can be classified into two major categories: affinity
labeling and enzymatic labeling. Affinity labeling is based
on a non-covalent chelation and provides a simple and
highly selective labeling procedure that is applicable to
various sites within the POI. On the other hand, irreversi-
ble covalent labelling by enzyme-catalyzed labeling meth-
ods still is more suited for the clear analysis of the POI,
since these methods provide a higher stability. Therefore
non-enzymatic covalent labeling is highly attractive since
there is no need for a large enzyme or a protein domain
and many labeling reagents as well as reaction conditions
are well suited to this strategy.

In most cases self-labeling tags are smaller in size than
AFPs and can be post-translationally labeled with a variety
of synthetic fluorescent probes. These can provide alterna-
tive spectroscopic properties compared to AFPs [92]. They
can be advantageous in applications, if the size of the tag
is important [93] or if the conditions are not suited for
AFPs, such as anaerobic environments [94]. Self-labeling
tags are also a promising addition to the tools available
for the immobilization and purification of proteins via
affinity chromatography and can be useful in microarrays
or on beads for pulldown assays.

http://www.biosignaling.com/content/7/1/16

Chemical labeling of fusion proteins has the advantage
that the selectivity of labeling is genetically encoded, but
the fluorescent properties of the probes can be modified
synthetically (Figure 4). Since most fluorescent probes are
membrane-permeable the POI can be labeled nearly at
every site of the molecule. Labeling systems with cell
membrane impermeable probes are only suited for cell-
surface labeling applications.

The opportunity to control the localization and the time
point of labeling enables scientists to study protein func-
tion in time and space inside a living cell at the molecular
level. The choice of using different dyes at various time
points during the experiment in cells, when protein trans-
lation is not inhibited, will lead to distinct populations of
otherwise identical proteins whose discriminating fea-
tures are determined through the time point of the respec-
tive labeling of each population. Such pulse-chase-
experiments will reveal further insights into protein func-
tion and localization.

Fluorescent ligands

The history of fluorescent ligands has been followed by
the development of commercially available fluorophores
(Table 4) [16]. Low molecular weight organic dyes have
been designed and synthesized to exhibit excitation and
emission wavelengths that are tuned to the excitation
sources of the fluorescence signal readout instrument.
These dyes can be coupled by their functionalities in easy
to handle conjugation reactions. The most widely used
labels are based on xanthene dyes or the cyanine structure
[95-104]. Succinimidyl esters have become the preferred
reactive group for labeling of amino groups and lead to
the formation of stable peptide bonds. This reaction is
easy to control, in contrast to the reaction of sulfonyl chlo-
rides. Maleimide and iodoacetamide derivatives represent
the state-of-the-art for the labeling of sulhydryl groups.

There is a remarkable trend to develop and use labeling
reagents that fluoresce at longer wavelengths, which allow
the measurement of still more parameters within multi-
color experiments and are suited for fluorescence imaging
in vivo [105]. The most significant advantage of these dyes
is the reduced background fluorescence from cells, cell
debris, buffer components and plastic materials. How-
ever, infrared fluorescent labels have a lower chemical and
photo-stability. Semiconductor nanocrystals, called quan-
tum dots (QDs), provide a great alternative to traditional
dyes [106]. They fluoresce throughout the visible and
near-infrared spectrum and can be excited very efficiently
with one excitation source. Since they possess narrow
emission bands, up to 20 QD reagents could be detected
separately with narrow band-pass filters. Therefore they
will also promote the applications of fluorescently labeled
peptide ligands in the future [107,108].
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Table 3: Important peptide- and protein-tags for fluorescently chemical labeling applied on living cells

Tag Remark Labeling agents Reference
Lumio™-tag tetracysteine/biarsenical system biarsenical dyes, e.g.: [80,81,93]
tetracysteine motif: CCXXCC CHoXAsH (blue)
size: 6-20 aa FIAsH (green)
ReAsH (red)
membrane-permeable
non-fluorescent until binding
His-tag oligo-histidine/nickel-complex system nickel-nitrilotriacetic acid (NTA-Ni2*) dyes, e.g.: [82,83]
oligo-histidine sequence: (H),, n =6 NTA-FITC-Ni2* (green)
size: 6-10 aa NTA-QSY-Ni2* (red)
NTA-DCF-Ni2* (green)
SNAP™.tag  mutated human O¢-alkylguanine alkyltransferase (hAAGT) fluorescent benzylguanine (BG) derivatives, e.g.:  [80,84,85]
size: 182 aa BG-505 (green)
BG-TMR-Star (red)
cell-permeable or cell-impermeable
ACP/PCP-tag acyl carrier/peptide carrier protein tag labeled via fluorescent coenzyme A conjugates, e.g.: [86,87]
phosphopatheine transferase (PPTase) CoA-fluorescein (blue)
size: 80 aa CoA-Cy3 (green)
CoA-Cy5 (red)
cell-impermeable
HaloTag™ mutated prokaryotic dehalogenase fluorescent haloalkane ligand, e.g.: [88,89]
size: 297 aa HaloTag 488 ligand (green)
HaloTag TMR ligand (red)
cell-permeable or cell-impermeable
AP-tag biotin acceptor peptide labeled via E. coli biotin ligase BirA fluorescent streptavidin, e.g.: [90]

size: 15 aa

streptavidin-Alexa568 (red)

Besides its pharmacology, the fluorescent ligand has
chemical properties that will determine its behavior on
and in a cell. Most drugs can be placed within a spectrum
of lipophilicity to hydrophilicity. It is important to deter-
mine these properties and if they are altered by the addi-
tion of a distinct fluorescent molecule dependent on its
position [109]. Therefore preference should be given to
fluorophores with high stability and fluorescent yield as
well as resistance to photo-bleaching and which preserve
the pharmacological properties of the ligand.

Many fluorescent ligands are peptides. The synthesis of
fluorescent small-molecule ligands of GPCRs is not a triv-
ial process. A potential site for fluorophore conjugation is
in much closer proximity to the pharmacophore for small
molecules and as a consequence, much more likely to
affect ligand affinity and efficacy. A common approach
includes the separation of the ligand and the fluorophore
by some form of linker or spacer, which may vary in
length and chemical nature as requested by the biological
activity. Well established high-affinity ligands with excist-
ing structure-activity relationship data can suggest
whether a modification of a chemical site in the molecule
might be tolerated. Positional scanning peptide combina-
torial libraries can also be used to identify new fluorescent

ligands [110] and procedures such as the Macro-model's
large-scale low mode (LLMOD) enable the conforma-
tional profiling of fluorophore-modified peptides [111].

Fluorescent ligands have so far been developed for a vari-
ety of GPCRs to investigate ligand-receptor interactions.
The ligand to be tagged may be an agonist or an antago-
nist (Figure 5). Antagonists usually offer a higher affinity
and thus provide a better signal to noise ratio than ago-
nists [112], but in most cases they do not induce receptor
internalization, although receptor clustering was observed
[113]. Metabolically stable analogs may prove more
advantageous in vivo, however their intracellular fate may
not faithfully mimic that of the native ligand.

Fluorescence applications to study GPCRs

The described methodologies to label GPCRs provide the
possibility to monitor the expression and cellular localiza-
tion of these biomolecules. But visualization represents
only the first step of a variety of colorful applications for
unraveling biological processes. The investigation of
GPCR functionality, clustering, trafficking, biosynthesis
and degradation as well as the identification and visuali-
zation of important protein-protein-interactions, such as
receptor oligomerization, ligand binding, G-protein cou-
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Figure 4

Visualization of GPCRs by peptide- and protein-tag
technologies (A; above: Lumio™-tag technology and
below: SNAP ™-tag technology). Membrane and subcel-
lular localization of human Y| receptor C-terminally fused to
the tetracysteine motif in HEK293 cells and labeled with the
membrane-permeable FIAsH dye, which fluoresces green
after binding to the motif (B; bar represents 10 pm). Cellular
distribution of hY R C-terminally modified by the mutant
hAGT in HEK293 cells and labeled with the membrane-per-
meable, red fluorescent BG-TMR-Star dye (C; bar represents
10 um).

pling and arrestin recruitment in living cells has become
feasible. Recent advances in fluorescence instrumentation
not only allow qualitative but also quantitative data anal-
ysis and led to the ongoing development of high-through-
put applications.

Expression and localization

Fluorescent antibodies and ligands as well as auto-fluores-
cent proteins and self-labeling tags are suited for monitor-
ing receptor expression and cellular distribution.
However, some considerations due to the difference in the
labeling procedures have to be taken into account to
receive reliable results.

Immunohistochemistry is a valuable method to localize
GPCR expression and provides important information for
defining receptor function and disease association. Fluo-
rescent antibodies can be used to visualize the tissue and
cellular distribution of receptors with a far greater lateral
and axial resolution than offered by autoradiography
[114,115]. The fluorescence can be quantified by fluores-
cence activated cell sorting (FACS) analysis or by special
microscopic software. A limitation of the immunofluores-
cence method is the low expression level of wild-type
receptors in normal cells and native tissues. One early
method, which was developed to overcome this problem,
is the tyramide signal amplification (TSA) method [116].
This is a sensitive immunodetection technique based on
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the peroxidase (POD) catalyzed deposition of labeled
tyramide molecules. TSA in both direct (fluorophore con-
jugated) and indirect (biotin or dinitrophenol conju-
gated) variants has been used to amplify signals. It was
furthermore successfully applied in double and triple
labeling immunofluorescence confocal-based studies
[117] and allows the use of low antibody concentrations
to reduce background and non-specific binding.

Since receptors are highly mobile within the cell and the
membrane, IHC generally requires fixation of cells and
tissues. Therefore, this approach can be used to detect
receptor localization at fixed time points however chemi-
cal fixation may negatively translocate them on the cellu-
lar level. It is very important to choose a fixative with
relatively mild shrinkage effects on cells, as well as non-
fluorescent properties to avoid cross-talk of signals
between the chemical and the applied fluorophore(s).
The fixation of cells could also negatively affect the con-
formation of the receptor antigen and thus the antibody
binding. The conditions of fixation (temperature, time,
pH) are furthermore critical for the accessibility of the
antigenic epitope [118]. Since the antibodies are not able
to pass the cell membrane, IF is usually restricted to the
extracellular receptor site. Only cell permeabilization ena-
bles the receptor detection at the intracellular receptor site
or in subcellular compartments.

However, labeled antibodies provide the possibility to
quantify the surface expression of receptors, because the
antigenic epitope can also be detected via a cell surface
ELISA [119]. In this approach the secondary antibody is
labeled with an enzyme, e.g. peroxidase (POD) or alka-
line phosphatase (AP) that catalyzes a reaction, which
results in a chromogene product that is easily measurable
with a plate reader. This application is widely used to
compare the surface expression of different receptor sub-
type mutants [120]. Using permeabilized cells in a paral-
lel approach the ratio between total and surface expressed
receptors can be determined. Additionally, both popula-
tions can be visualized e.g. with species-specific primary
and different fluorescent secondary antibodies [121].

Fluorophore-tagged GPCR ligands allow the direct non-
radioactive visualization of their receptor target at the sin-
gle-cell level, provided that the affinity and selectivity of
the modified ligand is known not only at recombinant
cells over-expressing a particular receptor but can also lead
to the endogenous receptor. With respect to improved sta-
bility, detection of different receptor subtypes in cells and
tissues and prevention of receptor internalization small
non-peptidic fluorescent antagonists should be applied. It
should be noted, that the choice of the fluorophore can-
not only variably influence the host pharmacophore but
also can lead to different fluorescence distribution pat-
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Table 4: Fluorescent dyes to label receptor ligands
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Ligand Action Receptor Reference
Fluorescein dyes: cover green wavelengths of the visible spectrum

contra: photo-bleaching, pH sensitivity
Fluorescein-naloxone antagonist MOR [95]
Carboxyfluorescein-NPY agonist YR [96]
Rhodamine dyes: cover red wavelenghts of the visible spectrum

pro: pH insensitivity, photo-stability

contra: water solubility, non-specific binding, quenching
Rhodamine-angiotensin Il agonist ATR [97]
TRITC-a-bungarotoxin antagonist AChR [98]
Cyanine dyes: cover full spectrum from UV to IR

pro: water solubility, reduced quenching, diverse reactive groups
Cy3-EGF agonist EGFR [99]
GR119566-Cy5 antagonist S5HT;R [100]
BODIPY dyes: cover visible range

pro: sharp excitation and emission, high and insensitive quantum yields, pH insensitivity
BODIPY FL-hPP agonist Y,R [roi]
BODIPY 558/568 pirenzepine antagonist MR [102]

Alexa fluor dyes:

cover spectrum from visible range to IR

pro: pH insensitivity, photo-stability, increased brightness, diverse reactive groups

Alexa 532 adrenaline
Alexa 647 CXCLI |

agonist
agonist

B,-AR
CXCR

[103]
[104]

Quantum dots:
lifetimes, multivalent surface
contra: large size

agonist

agonist

Deltorphin ll(lle-lle)-QD595
QD560-dopamine

DOR
D2R

pro: broad absorption, narrow and tune-able emission, photo-stability, strong luminescence, long luminescent

[107]
[108]

terns in receptor expressing cells [122]. Since it is impos-
sible to predict exactly how a fluorescent drug analogue
will perform or distribute within a living cell careful phar-
macological, chemical and biological validation of the
fluo-ligand are required. Compounds that only show flu-
orescence when they are bound to the receptor offer low
background fluorescence in the aqueous phase and thus a
high signal to noise ratio. Novel methodologies for stud-
ying receptors in native cell tissue or recombinant recep-
tors in cell culture were developed and validated [123]
and used for the identification and localization of recep-
tors in primary cultures of native cells [9,124] and also in
intact blood vessels [125,126].

Sufficient washing steps or quenching procedures are
required to receive clear images of GPCR expression and
localization and to specifically detect the GPCR signal.
This can lead to complications, such as influencing cell
viability or to promote ligand dissociation. The com-
monly first and simplest method to monitor GPCR
expression and localization is the genetic generation of
GFP receptor fusions. Because GFP is covalently attached
to the protein of interest potential problems with non-
specific fluorescence can be avoided. GPCR-GFP fusions

can also overcome problems of relatively low levels of
receptor expression, the stoichiometry of the receptor and
the fluorescent protein is well defined. These fusions offer
enhanced sensitivity and resolution in comparison to
standard antibody staining techniques and there is no dis-
tortion or alteration of membrane compartments, since
there is no need for cell fixation, cell permeabilization or
additional labeling steps [127]. However, cells can be
fixed for convenience, because GFP is chemically resistant.
Additionally, GPCR-GFP fusions are more resistant to
photo-bleaching than antibodies or ligands. They exhibit
low background fluorescence and permit kinetic studies
of protein localization and trafficking. This allows investi-
gators to visualize proteins for a longer duration of time
in an intact cellular environment than currently possible
with the use of other extrinsic fluorescent probes. The real
time expression in living cells can be easily detected and
quantified by fluorescence microscopy, fluorescence spec-
troscopy, FACS analysis or fluorometric assays. Recent
advances in instrumentation and image analysis have
opened the door to high-throughput in vivo studies that
can provide the morphological and temporal context for
the biochemical pathways regulating cell function [128].
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Figure 5

Visualization of GPCRs by a fluorescent agonist (A;
green) or a fluorescent antagonist (A; red). Fluores-
cent agonists induce receptor internalization to intracellular
endosomes as demonstrated by SK-N-MC cells, endog-
enously expressing the human Y, receptor, incubated with
CF-labeled neuropeptide Y (B; NPY in green, nuclei in blue,
bar represents 10 um). In contrast, fluorescent antagonists
prevent receptor trafficking to intracellular compartments
and target receptors at the cell membrane as shown by Sch-
neider et al. using MCF-7 cells, endogenously expressing the
Y, receptor, incubated with Py-|-labeled YR antagonist
derived from BIBP3226 [112].

As mentioned above it is very important to check, whether
the fluorophore-tagged receptor retains its natural proper-
ties, because it can be important to either label the recep-
tor at its N- or C-terminus. Labeling can negatively
influence the ligand binding pocket or the coupling of the
G-protein in the signal transduction process. Thus, careful
experimental comparisons to untagged receptors should
be made whenever possible. For successful fluorescence
detection enhanced and optimized monomeric GFP vari-
ants should be applied, since the formation of GFP oli-
gomers can result in aggregation of the chimera and
disturbance of the target protein function and localiza-
tion.

Being fused to a GPCR the GFP fluorescence is expected to
be well located within the cell membrane but possibly
also to certain amounts in subcellular compartments,
such as the endoplasmic reticulum (ER) or the Golgi
apparatus (GA), because the chimeric protein in living
cells reflects the normal turn-over of the GPCR. Thus, the
surface expression of a given GPCR can be easily moni-
tored but this might also depend on the cell system used,
because the protein repertoire of the cell line might have
an influence on the expression, localization and distribu-
tion of the GPCR-GFP chimera [129]. Therefore, it is
important to always combine visualization with func-
tional studies, in order to identify the possible role of
intracellularly located receptors and their relationship to
surface membrane-located proteins. Appropriately mem-
brane-located GPCRs can also be used to screen for
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mutants to identify regions within the receptor that are
important for subcellular targeting [130].

Despite the rapid progress in visualization of GPCRs in
living cells caused by auto-fluorescent proteins these illu-
minators have limitations. They are relatively bulky,
therefore interference with protein structure, localization
and function may occur. Genetically encoded peptide-
and protein-tags for chemical labeling provide an alterna-
tive method to label and visualize receptors in living cells,
thereby reducing the size of the receptor-fluorophore
complex and expanding the spectral range to the near-
infrared region.

However, there is great variation among these methods in
terms of labeling specificity, velocity, stability, size of the
tag, toxicity and versatility to probe structure and cell type
and no single method yet succeeds in all these respects.
Unspecific labeling within the cells has to be avoided for
a specific detection. Therefore washing steps are indispen-
sable to reduce possible background fluorescence. Sys-
tems providing dyes that are non-fluorescent before
binding, e.g. the Lumio™-tag technology, or that perform
a spectral change while binding to the tag positively influ-
ence the signal to noise ratio. Another important consid-
eration for chemical labeling in living cells is the potential
of the probe or targeting sequence to affect the cellular sys-
tem via toxicity or more complicated interactions, which
have to be ruled out by suitable controls and improved
labeling protocols. The stability of the fluorescent com-
plex is influenced by the possible dissociation of the fluo-
rescent probe as well as the degradation of the complex.
The labeling timescale will define the number of biologi-
cal processes that can be studied, the faster the labeling,
the more processes may be addressed. However, these
self-labeling tags can be used to differentiate easily
between intracellular and extracellular pools of the mem-
brane localized proteins, e.g. GPCRs. For this application
the tag has to be introduced at the N-terminal of the recep-
tor site and a tag system has to be applied that provides
both cell-permeable as well as cell-impermeable labeling
dyes.

Cell surface dynamics and mobility

Increasing evidence favors the concept of membranes
being organized into domains with defined lipid and pro-
tein compositions. These domains are believed to serve as
platforms for trafficking, sorting, signalling and pathogen
entry by concentrating certain selected lipids (e.g. choles-
terol and sphingolipids) and proteins [131-133]. Resist-
ance to solubilization by mild non-ionic detergents at low
temperature represents an extensively used biochemical
criterion to identify, isolate and characterize those mem-
brane domains [134]. Detection of proteins in detergent-
resistant membranes is usually performed either by
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immunoblotting or ligand binding. However, these meth-
ods are not suitable in cases in which ligand binding is
compromised in the presence of the detergent and/or is
limited by the availability of antibodies with high specifi-
city. GFP tagged membrane proteins are an alternative to
directly determine detergent insolubility of GPCRs based
on the fluorescence quantification of the membrane pro-
tein before and after detergent treatment [135]. Specific
lipid (DiIC,; and FAST Dil) and protein (transferrin
receptor) markers have been utilized to validate this fluo-
rescence approach. The method of analysis of detergent
insolubility can be useful in exploring localization and
organization of GPCRs in membranes and has the poten-
tial to be used in large-scale screening as well.

The activation of GPCRs leads to the recruitment and acti-
vation of heterotrimeric G-proteins and occurs at the
plasma-membrane. The lateral mobility of the activated
receptor on the cell surface represents an important pre-
requisite for the interaction with G-proteins and has a sig-
nificant impact on the overall efficiency of the signal
transduction process [136,137]. To examine the cell sur-
face dynamics of a GPCR in the plasma membrane the flu-
orescence recovery after photo-bleaching (FRAP)
technique can be applied [138]. This method involves the
generation of a concentration gradient of fluorescent mol-
ecules by irreversibly photo-bleaching a fraction of fluor-
ophores with a high intensity laser in a small area of the
cell membrane. The recovery of fluorescence into the
bleached region is used to measure the membrane diffu-
sion characteristics of the GPCR, but also their changes in
terms of ligand binding, activation as well as receptor oli-
gomerization [139-141].

The application of confocal microscopy and multiple
fluorophore-tagged ligands can provide the basis for time
course studies of receptor cluster formation [100]. The
receptor mobility can be visualized by photo-dissociation
of a fluorescent ligand - a process distinct from photo-
bleaching. The ability of intense focused light to remove a
fluorescent ligand from one site and hence allow the bind-
ing of a ligand molecule of another color enables the vis-
ualization of the movements of spatially restricted
subpopulations of cell surface receptors [142].

Comparing FRAP and FCS, both methods can be used for
different applications. Whereas FCS can only be used to
monitor mobile receptors, FRAP also allows to follow
immobile molecules. In contrast, only FCS can be used to
provide information on a single molecule level.

Trafficking — internalization and recycling

In response to agonists GPCRs desensitize, aggregate on
the cell surface and move from the plasma membrane into
intracellular vesicles at different rates and to varying
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extents. Then, GPCRs are either recycled to the cell surface
or degraded in lysosomes [1,2].

Classically, receptor internalization after ligand exposure
has been measured by radio-ligand binding and laborious
physical fractionation techniques. This process can also be
visualized and quantified by immunofluorescence stud-
ies. One approach is the measurement of the loss of sur-
face receptors from the cell membrane as a result of
internalization. In this case the receptors are not accessi-
ble to antibodies from outside the cell anymore. Receptor
sequestration is then defined as the fraction of total cell
surface receptors that, after ligand treatment, are removed
from the cell surface [143]. Otherwise it is also possible to
detect the internalized receptors inside the cells in com-
parison to un-stimulated examples. Accordingly, the
receptors have to be labeled with the antibodies prior or
after ligand exposure. Since cell fixation and permeabili-
zation are a prerequisite for receptor detection after ligand
treatment, the labeling with antibodies within this appli-
cation can not be performed in living cells. The receptor
labeling before the stimulation provides the detection of
receptors available on the cell surface at a certain time
point but requires the ability of the ligand to bind to the
bulky antibody-tagged receptor compared to the un-
tagged one. The bound antibodies should not interfere
with the ligand binding process and for that reason fluo-
rescently labeled primary antibodies may facilitate this
approach by a smaller antibody-receptor-complex. If there
is no fluorophore-labeled primary antibody available, it
will be a compromise to perform the receptor stimulation
after labeling with the un-labeled antibody and thus visu-
alize it with the labeled receptor after fixation and perme-
abilization.

Labeling of cell surface receptors with fluorescent anti-
bodies at a specific time and the subsequent ligand expo-
sure provides the basis for receptor recycling experiments
in living cells by applying either fluorescence microscopy,
FACS or ELISA. If the labeled GPCR recycles back to the
cell surface after the removal of the ligand then these
defined GPCRs will be detected and quantified in the cell
membrane again, in contrast to only stimulated or
degraded receptors [43]. Receptor recycling can then be
defined as the fraction of total cell surface receptors, after
ligand treatment and clearance of stimulus, that are back
at the cell surface and therefore accessible for antibodies
[144-146]. But without receptor pre-labeling, also un-
stimulated and membrane-destined, recruited and recy-
cled receptors can be co-detected with the stimulated and
recycled receptors as a separate second population.

N-terminally located self-labeling tags and their corre-
sponding membrane-impermeable dyes can also serve as
a tool for studying GPCR internalization and recycling,
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since only the labeled receptors are visualized prior to the
ligand stimulation. In contrast to antibodies, the size of
the GPCR-fluorophore complex is significantly reduced.
However this approach also requires ligand binding to the
pre-labeled receptor that is not interfered with by the
label.

The use of GFP-tagged receptors enables a more simple
and rapid assessment of GPCR trafficking, which is not
possible by other techniques. The ligand can be applied to
living cells and the movement of GPCRs can be visualized
in real-time under varying conditions concerning incuba-
tion time, temperature as well as ligand concentration and
specificity. The internalized GFP-labeled receptors are vis-
ualized as numerous punctuated spots in the perinuclear
region of the cell. Algorithms have been developed that
identify and collect information about these spots, allow-
ing the quantification of the internalization process and
the screening of ligand-induced receptor dynamics in
whole cells. The obvious advantage to pharmacologists, in
using GFP fusion proteins over antibodies is the ability to
promote receptor sequestration by using both, agonists
and inverse agonists [147]. With the help of fluorescent
markers for subcellular compartments, e.g. for endosomes
(transferrin) or for lysosomes (dextran, LysoTracker), the
GPCR can be directly located within the cell and its recy-
cling back to the cell membrane and/or degradation can
be easily detected. GFPs that are more sensitive to lower
pH levels, such as the "ecliptic pHluorin" or the enhanced
yellow fluorescent protein (EYFP), can be used a non-
invasive pH indicator for intracellular organelles and cyto-
plasm, and for the quantification of GPCR trafficking,
because the fluorescence is quenched as these protein chi-
meras enter lysosomes [148,149].

Since only agonist ligands seem to promote receptor inter-
nalization, also fluorescent agonistic ligands are a valua-
ble tool for the investigation of receptor trafficking, not
only in living cell culture studies but also in living neuro-
nal cells. The accumulation of fluorescent ligands at the
perinuclear region appears to be a common feature of
many GPCR-ligand complexes [150]. To study the cellular
receptor distribution after agonist exposure it is necessary
to remove unspecifically bound molecules as completely
as possible. Frequently applied methods include hyper-
tonic acid stripping that removes surface-bound ligand
while leaving the intracellularly bound sites for analysis
[151]. The fluorescent yield of some dyes was found to be
pH sensitive, an effect that possibly is potentially helpful
in internalization studies by indicating the presence of
GPCRs in endosomal compartments with relatively high
pH. The fate of both, receptor and ligand can be simulta-
neously determined and visualized when a fluorescent lig-
and and a fluorophore labeled receptor are used together
[97,129]. Studies have examined the trafficking of the lig-
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and as well as of the receptor, which provides further
important insights into the fate of the receptor-ligand
complex as well as into cellular mechanisms such as the
regulation of the GPCR signal via ligand degradation
[129].

Of course the value of the fluorescent methods has criti-
cally to be compared with classical biochemical methods,
e. g. co-immunoprecipitation and fractionation. A clear
advantage of the fluorescent methods is their application
on whole cells as well as the possibility to monitor the
effects in a time-dependant manner. Limits, however, are
due to cross-talk, channel bleed-through and limited res-
olution because membrane microdomains usually are
below light resolution.

Biosynthesis

GPCR biosynthesis, folding and assembly take place in
the endoplasmic reticulum (ER). When the receptors are
correctly folded, they are packaged into ER-derived vesi-
cles and migrate from the ER to the ER-Golgi intermediate
complex (ERGIC), the Golgi apparatus and the trans-
Golgi-network (TGN). During this transport process
receptors undergo post-translational modifications (e.g.
glycosylation) to ensure final migration to the cell surface
[152]. The export from the ER and the membrane target-
ing are highly regulated processes and the detailed mech-
anisms are not explicitly understood. These investigations
will need further information on the age, expression, life-
time and movement of GPCRs also for the comparison of
ligand-stimulated and un-stimulated GPCR-expressing
cells. Therefore, it is indispensible to apply methodologies
which can distinguish between old and newly synthesized
receptors in living cells.

In order to discriminate between different populations of
membrane located GPCRs pulse-chase studies can be per-
formed with different fluorescent variants of the used
antibody. This application on living cells can provide new
insights into the receptor turnover, but is dependent on
the applicability of primary fluorescent antibodies. In
terms of investigating receptor biosynthesis after ligand
stimulation again the appropriate ligand binding to the
antibody-receptor complex is necessary. Intracellular
receptors have not yet been delivered to the plasma mem-
brane and receptors present at the plasma membrane have
their first N-terminal epitope irreversibly cleaved by the
enzyme [153].

Receptor-specific fluorescent ligands with high binding
affinity and low off-rates have also been found to be
suited for receptor pulse labeling [100]. The low off-rate of
the ligands ensures the stability of the ligand-receptor
complex during the whole period of the experiment. Dif-
ferent chromophores attached at the same pharmacoph-
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ore enable the consecutive application  of
spectroscopically distinguishable ligands to visualize the
surface appearance and turnover of GPCRs.

The development of fluorescent protein variants opens up
the possibility of performing "pulse-chase" experiments
in living cells, by visualizing a distinct pool of the protein
of interest in a defined region of the cell and following its
transport and turn-over in real time. Important advances
include the development of GFP-variants that can be acti-
vated by ultra violet (UV-) light, such as photo-activatable
GFP (PA-GFP) [154], or those that can change their color
from cyan to green [155], or from green to red [156] upon
intense illumination with violet or UV-light. However, the
complex photochemical processes underlying the phe-
nomena of photo-activation and photo-conversion can
also cause problems with normal fluorescent proteins
leading to potential artifacts under certain circumstances.
Intense illumination of EYFP with 514 nm laser light can
lead to photo-conversion to a protein with ECFP-like flu-
orescence properties, which can be a problem in experi-
ments that are based on bleaching of EYFP [157]. Photo-
bleaching that leads to photo-toxicity can be significantly
reduced by specialized forms of confocal microscopy such
as spinning-disk microscopy, in which the excitation light
is guided through a series of small pinholes [158] or by
excitation technologies that are applied in two-photon or
multi-photon laser scanning microscopy [159].

However, the recently established self-labeling tags are
and will be suited for pulse-chase studies more efficiently
than all other fluorescence technologies. The free choice
of specific time points for pulse labeling of the receptor
and the sequential labeling of receptor subpopulations
with spectrally distinguishable fluorophores provide a
promising tool for the imaging of consecutively expressed
GPCRs and their spatiotemporal organization [160].

Functionality — ligand binding and signal transduction

Since GPCRs are associated with diseases they are a very
important target for the pharmaceutical industry. The
ability to measure and quantify the binding of ligands to
these receptors and the obtained responses has been, and
remains, a key element of the drug discovery process. The
most common way to study this include radioactively
labeled drug molecules to label receptors directly on the
cell surface or in membrane fragments from cells over-
expressing the receptor of interest.

Because of high-throughput and high-content drug dis-
covery assays with improved detection efficiencies,
increased health, safety and disposal issues associated
with the application of radio-ligands, there is a need to
develop more robust fluorescence-based techniques and
receptor-specific ligands with fluorescent properties. Fluo-
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rescent ligands have several advantages over traditional
radio-ligand binding techniques [161] and studies with
different neuropeptides comparing radio-ligand with flu-
orescent ligand binding revealed a higher resolution with
fluo-peptides [96]. The interest and use of fluorescent lig-
ands is growing not only to reveal novel information on
the life cycle of the receptors but also to develop receptor
binding peptides, e.g. small molecular weight antagonists,
for diagnosis as well as for therapy [162].

The application of flow cytometry can be used to charac-
terize the specificity of fluorescent ligands [104]. Within
this method the applied laser beam is precisely directed
towards the surfaces of the receptor-expressing cells,
which are centered in the core of a thin sample stream.
Therefore it is mainly cell-associated fluorescence that is
detected and the signal is hardly impaired by free fluores-
cent ligand in solution thus allowing measurements of lig-
and binding under equilibrium conditions [163]. Several
innovative approaches in flow cytometry to investigate
GPCRs have been described. The determination of bind-
ing and/or functional data with intact cells as well as the
potential of flow cytometric techniques in high-through-
put screening will further advance and accelerate the drug
discovery process through experimental setups to gain
equilibrium binding, selectivity data and the functional
activity of GPCR ligands in one single step [164].

Cell-based FCS measurements with fluorescent ligands
can be applied to determine the properties of ligand-
receptor complexes within small areas of the cell mem-
brane by measuring the fluctuations of fluorescence inten-
sities and employing mathematical correlation algorithms
[165]. Since FCS can determine the diffusion rate of a
tagged receptor directly and yield quantitative informa-
tion about its membrane environment it can provide
important insights into subcellular quantitative GPCR
pharmacology [166].

Instead of the direct measurement of the fluorescence of
the bound or free fluorescent ligand after separation, flu-
orescence polarization has been identified as a useful
method to follow receptor bound ligands even in high
throughput assays. As some of the organic fluorescent
molecules are sensitive to their surrounding the measure-
ment of the anisotropy or polarization may depend on
whether the ligand is bound to the receptor or free. This
method has been used to investigate ligand binding of dif-
ferent GPCRs, including vasopressin, melanocortin, neu-
rotensin and opioid receptors [167].

Ligands carrying two fluorophores with spectral character-
istics, that are well-suited for FRET measurements, can
provide further insights into the bioactive conformation
versus the conformation in solution of the ligand by
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changes in intramolecular FRET due to distance change
between the fluorescently labeled residues [168].

Because GPCRs constitute excellent putative therapeutic
targets, identification of their endogenous ligands has a
great potential for drug discovery. The expression of GFP-
tagged GPCRs followed by incubation of the transfected
cells with fractions purified from tissue extracts and imag-
ing of ligand-induced receptor internalization has become
very important in functional characterization of orphan
receptors. The GFP-based internalization assay provides a
highly specific quantitative cytosensor technique with
sensitivity in the nanomolar range to identify natural and
synthetic ligands for GPCRs. Additionally, further
improvements in GPCR antibody technology led to con-
formation state-sensitive antibodies that can also be use-
ful for the identification of molecules with therapeutic
interest [169].

The activation of GPCRs is traditionally measured either
by membrane-based biochemical assays or by monitoring
downstream physiological events. Fluorescence spectro-
photometers are widely used for the quantification of
photometric and fluorometric cell-based assays, e.g. for
the investigation of second messenger systems as an indi-
rect way of assessing receptor function.

Since these methods are not suited for detailed kinetic or
spatial analysis of receptor activation and signaling, sev-
eral optical techniques have been developed to monitor
receptor activation continuously and in real-time. These
provide new insights in both the mechanistic basis of the
signaling process and the kinetic and spatial properties of
GPCR-mediated signals [170]. Fluorescent or luminescent
labeled ligands, receptors and G-protein subunits, in com-
bination with the development of FRET and BRET
approaches, has allowed the determination of kinetic
parameters for many steps of the signaling process,
including ligand binding [171,172], receptor activation
[173,174], receptor-G-protein interaction [175,176], G-
protein activation [177] and effector activation [178].
Moreover, sensors have also been developed and further
optimized to measure second messenger molecules such
as phosphatidylinositol-3,4,5-trisphosphate (PIP;) [179],
cyclic adenosine monophosphate (cAMP) [180,181] or
cyclic guanosine monophosphate (cGMP) [182,183].
FRET sensors are usually fusion proteins of ECFP and
EYFP or EGFP and a monomeric red fluorescent protein
linked by a sensory domain. This domain is responsive to
changes in distinct cellular parameters by a conforma-
tional change, leading to a change of the FRET signal. A
variety of enzymatic or biological activities can be deter-
mined by the appropriate choice of the sensory domain
and are also relevant for studying intracellular processes,
as well as processes at the cell surface. Despite the devel-
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opment of FRET based sensors, which measure changes
between two GFP variants to assess second messengers,
sensors have also been developed which measure changes
in fluorescence intensity of a single circularly permuted
fluorescent protein (cpFP), e.g. for Ca2+ sensing [184].

When GPCRs bind agonists, they are thought to change
into an active conformation, which in turn binds to and
activates G-proteins. To study this receptor activation by
FRET fluorescent probes can be inserted in the third intra-
cellular loop and the C-terminus, respectively. In addition
to the most common ECFP/EYFP receptor sensors an
ECFP/FIAsH sensor was recently developed [93].
Although labeling with FIAsH requires an extra step and
the resultant receptor sensor bleaches more rapidly, simi-
lar results have been obtained and the ECFP/FIAsH sensor
has the advantage of leaving the receptor more intact with
respect to its ability to signal to G-proteins.

Further alternatives to assess GPCR activation are
approaches based on protein complementation [185]. In
this field enzyme fragment complementation (EFC)
assays notably have the advantage that the signal is gener-
ated catalytically, and thus the assay can exhibit high sen-
sitivity. Enzyme reporter proteins such as 3-galactosidase,
dihydrofolate reductase (DHFR) or lactamase have been
utilized, all of which can turn over chromogenic or fluor-
ogenic substrates. Luminescent signals can be generated,
either with luciferase or B-galactosidase as an enzyme
reporter. However, as split enzyme-based reporters
require substrate incubation, these assays often need opti-
mization with respect to concentration and incubation
time to exclude the background signal caused by the sub-
strate. Alternatively, complementation assays with split
fluorescent proteins with direct read-outs, such as micros-
copy or scanning spectroscopy instruments, were devel-
oped for the detection of rapid interactions without
interfering background signals [185].

Protein-protein interactions

An important aim in cell biology has been to identify and
to observe dynamic interactions between protein mole-
cules, as they execute the reactions of a particular bio-
chemical pathway. Concerning GPCRs, despite
elucidating ligand binding and signaling, the knowledge
and investigation of conformational changes and further
occurring protein-protein-interactions as well as their
meaning for the life cycle of GPCRs and changes in cellu-
lar responses is of utmost interest. Frequently applied bio-
chemical methods for the investigation of protein-
protein-interactions are immunoprecipitation, photo-
affinity labeling, cross-linking, size-separation chroma-
tography and Western blot analysis. All these methods
include cell lysis and are not able to follow protein-pro-
tein interaction in a living cell. The development of fluor-
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ophores and imaging techniques, such as FRET, BRET and
BiFC, provide experimental alternatives to these denatur-
ing techniques (e. g. immunoprecipitation). Fluorescence
methods allow the localization of specific biomolecules
in a time dependant manner, and accordingly also the
protein-protein interaction processes. Accordingly, these
techniques will help to find further answers to controver-
sially discussed issues such as the role of interacting pro-
teins in signal transduction cascades and their temporarily
Or permanent contacts.

Different FRET techniques and fusions with different spec-
tral characteristics have been described and used for the
study of protein interactions. Many modified versions of
FRET were developed to suit individual needs, e.g. for
large-scale quantitative analysis by flow cytometry
[186,187]. FRET can be measured in different ways. The
sensitized emission method is a spectroscopic approach
in which the sample of interest is excited at the wave-
length of the donor and thus the increase of the acceptor
fluorescence is quantified. Applying this technique
requires additional measurements of samples that only
contain the donor or acceptor, respectively, for correct
data evaluation. Acceptor photo-bleaching FRET using
confocal microscopy has become widely employed and
has the advantage to localize occurring FRET events at the
subcellular level [188]. In this approach the reduced fluo-
rescence intensity of the donor in the presence of the
acceptor within a FRET is focused. To demonstrate inter-
actions images before and after complete photo-bleaching
of the acceptor are obtained. When the donor image is
brighter following the acceptor photo-bleaching, then
FRET can be assumed to have taken place. Within BRET
approaches microscopy is rarely applied, the majority of
studies utilize plate-reading instrumentation [189].
Besides the possibility to perform single cell BRET assays
[190], there are many technical limitations because of the
reduced intensity of light released when luciferase oxi-
dizes its substrate. Thus the taking place, but not the loca-
tions of energy transfer can be investigated. However,
advantages of the BRET technique include the independ-
ence of a light source to initiate the energy transfer and the
lack of photo-bleaching. In contrast, the BiFC approach
allows spectroscopic as well as microscopic examinations.
The complementary parts of the different GFP variants,
when brought in close vicinity, produce BiFC with unique
spectral properties. Thus the technique allows detection of
multiple as well as competing interactions in vivo. By com-
bining BiFC with either FRET or BRET, it is theoretically
possible to demonstrate the simultaneous interaction of
three or more interacting partners. Recently, it was dem-
onstrated that Renilla luciferase (RLuc) [191,192] can be
used as a split enzyme. Accordingly BRET experiments
also might be possible now to study the assembly of mul-
tiple proteins into a complex.

http://www.biosignaling.com/content/7/1/16

Comparing the three methods, which one is the most
powerful? In fact, all three have advantages and disadvan-
tages and specific applications they could be used for best.
FRET and BRET are powerful techniques for real time
experiments, with reversible energy transfer but limited
dynamic range and the requirement of a complex multi-
wave lengths analysis that is prone to artefacts. In contrast,
BiFC studies are no real time experiments, very sensitive
and easy to measure, but represent the end-point as the
fluorscence formation is irreversible. Localisation of the
interaction is best studied with BiFC, whereas multipro-
tein dynamics are possible for competitive (multicolour
BiFC) and cooperative (BiFC/BRET) interactions.

Through the application of these fluorescence based
methods it is now widely accepted that the formation of
homo- and/or heterodimers or higher order complexes is
a universal aspect of GPCR biology [193] and could have
important functional roles, e.g. in receptor maturation,
function and trafficking [194,195]. A lot of GPCR systems
have already been examined by these non-invasive meth-
ods [196] and these investigations have supported our
understanding of the functional significance of homo-
and heterodimerization of GPCRs [197].

Despite the wide-spread application of GFP and its vari-
ants, the recent development of self-labeling tags provides
further alternatives of donor and acceptor receptor fusions
within FRET experiments. Recently the SNAP™-tag tech-
nology was successfully applied in time-resolved FRET
measurements [198]. The acyl carrier protein (ACP) labe-
ling technique was used to simultaneously label the N-ter-
minus of the neurokinin-1 receptor (NK1R) with Cy3 and
Cy5 at different, but well-defined ratios and thus allowed
FRET studies with high signal-to-noise ratios [199]. Also
fluorescent antibodies were successfully used to detect
receptor oligomerization. The various existing epitopes
allow not only co-expression and co-visualization of two
differently tagged GPCRs in one cell, but also provide
information about possible protein-protein-interactions.
Because of the existence of different fluorescent dye pairs,
e.g. fluorescein isothiocyanate (FITC, donor) and rhod-
amine (acceptor), which have an overlap in the donor
emission and the acceptor excitation spectra, labeled anti-
bodies have already been applied in FRET studies to inves-
tigate GPCR oligomerization [200]. Fluorescent ligands
are also used to study receptor subtype oligomerization by
FRET. GPCR-dimers as GFP-fusions can be determined
even when they still accumulate in the endosomal com-
partments. As receptor oligomerization is discussed in the
context of receptor trafficking this is of major interest
[201].

Receptor-mediated activation of a G-protein is an early

event in signal transduction and is thought to be a result
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of a transient interaction between an agonist occupied
receptor and its G-protein. However, also data from FRET
and BRET studies provided evidence that GPCRs and G-
proteins can form stable complexes [202,203]. G-protein
B and y subunits bind to each other with high affinity,
forming a heterodimeric complex, which is essential for
the stability of these peptides. The stability of the heterot-
rimeric complex formed by the association of G, and Gg,
is a controversial. The hypothesis that G dissociates from
Gg, when heterotrimeric G-proteins are activated in vivo is
generally accepted, however some experiments suggest
that they do not. Both hypotheses have been based largely
on data from in vitro experiments [203] and therefore
FRET has been used to probe this interaction during signal
transduction in vivo. However, the construction of a func-
tional fluorescently tagged G, subunit was not as simple
as producing their tagged and functional counterparts.
Although functional G, fusion proteins have been pre-
pared by inserting GFP variants into their o-helical
domains [204,205], FRET experiments in intact cells also
led to controversial results [177,178]. A decrease in FRET
signal can be due to subunit dissociation, however a con-
formational change within the heterotrimeric complex
can also produce the same result. The interpretation of
changes in FRET can be even more complicated, assuming
that each receptor monomer forms a complex with a G-
protein. The resulting proximity of G-proteins could pro-
duce FRET between subunits of different G-proteins as
well as between subunits within the same G-protein and
changes in FRET may be due to conformational changes
within an individual G-protein, between different G-pro-
teins or a combination of both.

Prolonged agonist activation of a GPCR is followed by
desensitization that occurs when G-protein coupled
receptor kinases (GRKs) phosphorylate the agonist-occu-
pied receptor and prevent further stimulation. This proc-
ess facilitates the interaction of the receptor with the
protein arrestin, resulting in internalization of the desen-
sitized GPCR, further leading either to receptor down reg-
ulation or to resensitization and receptor recycling to the
plasma membrane [206]. BRET is widely used to detect
the interaction of arrestin with a GPCR [207-209] and
FRET is applied to follow the time course of interaction
[173,210]. BRET studies additionally probing the interac-
tion between GPCRs and GRKs revealed that the time
course for the interaction with arrestin lagged behind the
interaction with GRK, which is consistent with the
requirement, that GRK-catalyzed phosphorylation must
precede arrestin binding [211].

Conclusion

It is proven that fluorescence techniques are powerful
tools for investigation of the very dynamic family of
GPCRs to understand their subcellular localisation and to
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further elucidate key elements in GPCR trafficking and
interaction with other signal pathways.

However, to obtain physiologically relevant results, some
considerations have to be made. First, it is of utmost
importance that the investigated GPCR, ligand or interact-
ing protein is not influenced in its functionality by the flu-
orescent modification. Therefore careful characterizations
are needed and to exclude interferences it might be help-
ful to apply different labels at different sites of the protein
for data evaluation [212]. Additionally, the label should
be as small as possible, the recent and ongoing develop-
ment and optimization of self-labeling tags will be advan-
tageous in this field. Using unnatural amino acid
mutagenesis the site-specific incorporation of reactive
keto groups, such as p-benzoyl-L-phenylalanine (Bzp) or
p-acetyl-L-phenylalanine (Acp), into functional GPCRs
and their ability to react with a variety of spectroscopic
and other probes was previously described [213]. Because
of their excellent fluorescent properties quantum dots are
very attractive for labeling, however the full potential of
QDs for cellular imaging has not yet been realized because
of problems with large QD size, QD multivalency and the
difficulty of delivering QDs into the cytosol. Recently,
monovalent and reduced-size quantum dots were gener-
ated and successfully applied for receptor imaging in liv-
ing cells [214].

Fluorescent antibodies provide a powerful tool for exam-
ining the cellular distribution of GPCRs. However, quan-
tification is highly depended on the accessibility of - in
most cases — the small epitope by the large antibody. The
challenge is to develop even more high-affinity fluoro-
phore- or enzyme-conjugated primary antibodies for one-
step labeling assays on living cells. The generation of
bright and stable dyes as well as pH sensitive ones, such as
CypHer 5 [34], will lead to further insights into the life of
GPCRs and will enable high-throughput screening appli-
cations. A new group of molecules, called affibody mole-
cules, is especially interesting for imaging applications
because of their small size (7-15 kDa) compared to anti-
bodies. These proteins are composed of a three-helix bun-
dle of 58 amino acids and are derived from the scaffold of
one of the IgG-binding domains of the staphylococcal
protein A [215]. The binding site is equivalent to an anti-
body with respect to the surface area. The size, the simple
structure, the specific target recognition, the ease of pro-
duction and the high stability give affibody molecules sig-
nificant advantages over antibodies. These molecules can
be labeled with fluorophores but also with radionuclides
which make them promising candidates for GPCRs asso-
ciated tumor diagnosis and therapy [216].

Recombinant DNA technologies have highly advanced

fluorescence labeling as well as transfection and trans-
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genic techniques that enable simple DNA delivery to cells
that results in covalent labeling by using the protein
expression system of the cell. However, expression levels
in cell cultures may significantly differ from those in nat-
ural systems. Concerning the signaling and trafficking
behavior of GPCRs the relationship between the occupa-
tion of the receptor by physiological levels of agonists and
the initiation of translocation is an important issue. The
general use of very high concentrations of agonist leaves
open the possibility that the investigated processes are
more pharmacological than physiological.

A major criticism of FRET/BRET studies used to investigate
protein-protein-interactions, is that the required protein
overexpression can result in RET attributed to a high inci-
dence of random collisions, rather than direct protein-
protein-interactions. If low expression levels can not be
obtained by varying DNA amounts within transient cell
transfections, stable cell transfections will provide an
alternative, since there is a homogenous population of
cells expressing the protein of interest at the same level.
Another possibility is the baculovirus expression system
which enables protein expression levels to be controlled
more closely than with transient transfection, because
protein expression can be titrated by adjusting the multi-
plicity of viral infection [217].

Since protein co-localization is the first prerequisite for
interactions, this should be proven by fluorescence micro-
scopy, and by using parallel labeling strategies to locate
subcellularly the interaction of interest. For correct evalu-
ation of FRET and BRET data appropriate controls have to
be used to demonstrate the specificity of the interactions
and to establish levels of RET considered to be back-
ground in any given experiment. The additional applica-
tion of a biochemical approach might support the results.
To validate the physiological role of the detected interac-
tion studies in other, more natural cell systems, e.g. cell
lines endogenously expressing one protein of interest, as
well as investigations on tissues and animals will be indis-
pensable in proving the relevance of the interactions in
the future. For example, the in vivo co-expression of
GPCRs has to be demonstrated in the same tissue, and
ideally in the same cell for establishing the physiological
relevance of receptor oligomerization. Functional cross-
talk between the receptor signaling pathways as well as
novel pharmacological and/or functional properties will
provide evidence for the mechanism by which receptor-
receptor-interactions modulate cellular activity [218].

An exciting application of GPCR-GFP chimeras involves
their use in genetic screens in genetically tractable organ-
isms such as yeast, e.g. to identify mutant yeast strains in
which the receptor is mis-localized. Such strategies con-
tribute greatly to the identification of new components
involved in GPCR targeting and trafficking in additional

http://www.biosignaling.com/content/7/1/16

model organisms [219]. New approaches using whole
organisms, in which the GFP-chimera can be expressed
under the control of the endogenous promoter, e.g. inver-
tebrates as C. elegans or mouse models, allow cell biolog-
ical, molecular and biochemical results to be interpreted
in a physiologically relevant context and to be compared
to those observed in cultured cells [220,221]. GFP and its
variants as reporters represent the next step in mouse
genome engineering technology by opening up the possi-
bility of combinatorial non-invasive reporter usage within
a single animal, e.g. for gene-expression, as well as for co-
visualization and FRET assays [222].

In summary, many issues concerning the life of GPCRs
can be addressed by fluorescence techniques, however
many remain challenging. Further rapid advances in labe-
ling and imaging technology can be expected and their
parallel as well as their combined application will provide
novel insights that will also broaden the range of new
therapeutic interventions.
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