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Abstract

Prostaglandin E2 (PGE,) is a natural lipid-derived molecule that is involved in important physiological functions.
Abnormal PGE; signalling has been associated with pathologies of the nervous system. Previous studies provide
evidence for the interaction of PGE, and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt
pathway is crucial in the development and organization of the brain, the main goal of this study is to determine
whether collaboration between these pathways exists in neuronal cell types. We report that PGE, interacts with
canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse
microscopy to determine that PGE, increases the final distance from origin, path length travelled, and the average
speed of migration in Wnt-activated cells. Furthermore, PGE, alters distinct cellular phenotypes that are characteristic
of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that
in Wnt-induced cells the level of 3-catenin protein was increased and the expression levels of Wnt-target genes
(Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE, treatment. This confirms that PGE,
activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously
associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE, and Wnt signalling
in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance
of PGE, and Wnt signalling in prenatal development of the nervous system, our study provides insight into how
interaction between these two pathways may influence neurodevelopment.
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Background

The plasma membrane phospholipids play a fundamental
role in the nervous system and act as a reservoir for sec-
ond messenger molecules important for the development
and normal functioning of the brain. Prostaglandin E2
(PGE,) is a bioactive fatty acid that is derived from ara-
chidonic acid, a major structural component of plasma
membrane phospholipids, through the enzymatic me-
tabolism of cyclooxygenases -1 and -2 (COX-1,-2) and
then prostaglandin synthases [1]. Extracellular stimuli
such as immunological and infectious agents [2-4], en-
vironmental toxins such as mercury and lead [5], and
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exposure to drugs including misoprostol and valproic
acid [6] can trigger the local production of PGE, via
specific biosynthetic pathways, resulting in altered cell
signal transmission that modulates biological functions
such as sleep, fever, inflammation, and pain [7].

The diverse action of PGE, is achieved through the
activation of 4 different G-protein coupled E-prostanoid
receptors (EP1 through 4) [8,9]. The divergent role of
PGE, is amplified by the variety of different kinase-
mediated signalling cascades that can be activated through
its EP receptors, such as the protein kinase A (PKA),
phosphatidylinositide 3-kinases (PI-3K), and protein
kinase C (PKC) pathways [10].

During the early stages of pregnancy, there are elevated
levels of COX-2 and PGE synthases, enzymes responsible
for the production of PGE,, which is indicative of the
involvement of PGE, in prenatal development [11]. We
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have previously shown that the expression profiles of EP
receptors during mouse embryonic development changes
depending on the embryonic stage, with EP receptor ex-
pression highest during E7 (Embryonic day 7) and E15,
which corresponds to peak periods of neurogenesis [12]. It
has been shown that PGE, plays a regulatory role in mem-
brane excitability and synaptic transmission in neurons
[13]. PGE, increases the dendritic length and complexity
of Purkinje neurons, and can also alter neuronal firing
activity in the developing brain [14]. PGE, is involved in
synaptic plasticity and neuroprotection [15], and can also
be involved in neuronal cell death and apoptosis [16,17].
Prostaglandins have also been reported to induce the
differentiation of neuronal cells [18]. Moreover, the inhib-
ition of COX-2, can suppress neurogenesis and prolifera-
tion of neural progenitor cells [19]. These studies show
the important role PGE, can play during normal develop-
ment of the nervous system. Furthermore, previous re-
search found that PGE, can exert various effects on cell
development, proliferation, and migration in a diversity of
cell lines. It has been shown that PGE, stimulates cell
growth and motility in osteoblasts [20], prostate cancer
cells [21], and pancreatic stellate cells [22]. The migration
of vascular smooth muscle cells [23], intestinal subepithe-
lial myofibroblasts [24], dendritic cells [25], hepatocellular
carcinoma cells [26], and mesangial cells [27] can all be
regulated by PGE,. However, the effects of PGE, on neural
stem cell behaviour and movement are not well character-
ized. Our previous studies provide some insight into the
molecular mechanisms of abnormal PGE, signalling on
neuronal cells. We have found that exposure to PGE,
results in the retraction of neurites and the elevation of
calcium amplitude fluctuations in growth cones of dif-
ferentiated Neuro-2A cells [12,28].

Abnormal fatty acid metabolism through the PGE,
pathway may contribute to the pathology of neurodeve-
lopmental disorders such as Autism Spectrum Disorders
(ASD) [29]. Abnormal levels of PGE, and other fatty
acid metabolites have been identified as potential bio-
markers for ASD [30]. PGE, can act as an endogenous
modulator for cerebellar development in the rat brain
affecting social interaction and sensory behaviour, which
are characteristic behaviours altered in ASD [31]. A clin-
ical study showed that maternal exposure to the drug
misoprostol (prostaglandin E analogue), has been associ-
ated with the development of Moebius syndrome and
autistic-like symptoms [32-34].

Current literature also provides evidence that PGE,
signalling interacts with another crucial developmental
pathway, the canonical Wnt (wingless-related MMTV
integration site) signalling pathway in various non-
neuronal cells [35] such as osteocytes [36], prostate and
colon cancer cells [37], hematopoietic stem cells [38],
and mesenchymal stem cells [39]. Wnt signalling is
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tightly regulated in early development and is required for
the formation of the nervous system [40]. The canonical
Wnt signalling pathway is composed of a network of pro-
teins that modify cell communication and interactions
with other cells. Wnt proteins bind to cell surface Frizzled
(FZD) receptors, where the signal is then transduced to
[B-catenin, activating the transcription of Wnt target
genes. The Wnt molecules are vital to embryonic devel-
opment since they can moderate cell proliferation and
differentiation by participating in the determination of
cell fates [41]. Previous literature shows that conver-
gence of PGE,-dependent signalling with the canonical
Wnt pathway can occur at the level of f-catenin through
EP1-4 receptors, including the association of the G, sub-
unit with Axin, the stimulation of the cAMP/PKA path-
way, or the phosphorylation of GSK-3B by PI-3K [42].
However, the interaction of PGE, and Wnt signalling is
not well-characterized in the nervous system. To activate
and study canonical Wnt signalling in an in vitro model
system, Wnt Agonist (WntA), 2-amino-4-[3,4-(methylene-
dioxy)benzylamino]-6-(3-methoxyphenyl) pyrimidine, can
serve as a useful reagent. WntA is a cell-permeable pyr-
imidine compound that mimics the effects of Wnt by
functioning through the canonical pathway via upregulat-
ing TCF-activity without inhibiting the activity of GSK-3
[43]. This is important because GSK-3p plays a regulatory
role in many signalling pathways other than Wnt so an
agonist that blocks GSK-3p could have disparate effects in
cellular models.

This study investigates the effects of PGE, interaction
with the Wnt signalling pathway on the behaviour of
murine neuroectodermal (NE-4C) stem cells. We dem-
onstrate that PGE, modifies canonical Wnt signalling in
NE-4C stem cells by altering components of cell motility
such as final distance travelled, path length travelled,
average speed of migration, as well as cell splitting be-
haviour. We also reveal that PGE, can alter the protein
expression of non-phospho (active) B-catenin (Ser33/37/
Thr41), as well as the expression of specific Wnt-target
genes. Interestingly, the genes implicated in our study have
been previously associated with ASD. To our knowledge,
we show for the first time, that PGE, signalling interacts
with the Wnt pathway in neural stem cells to affect cell
behaviour and gene transcription. Our study furthers
our understanding of the possible mechanisms by which
intracellular cross-talk between PGE, and Wnt signalling
may contribute to cell migration and proliferation during
prenatal development of the nervous system.

Results

Expression of EP1-4 receptors in NE-4C cells

To determine whether NE-4C cells endogenously ex-
press the receptors of PGE,, we performed real-time
quantitative PCR assay, Western blot analysis, and
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immunocytochemistry. Our results show that in NE-4C
cells, EP2 had the highest mRNA expression followed
by EP3y and EP4 receptors. Endogenous EP1 and EP3[
receptor expression was considerably low in NE-4C
cells, while the EP3a transcript level was nearly absent
and may be considered negligible. The relative quantity
(RQ =1) values of EP1, EP2, EP3a, EP3p, EP3y, and EP4
transcripts expression were 3, 542, 0, 1, 391, and 15,
respectively (Figure 1A). Western blot results confirm
the expression of all four EP receptors in NE-4C cells
(Figure 1B). The localization of the EP receptors in NE-
4C cells was also detected with immunocytochemistry
using EP1-4 specific antibodies along with antibodies
against various cellular organelles including the nuclear
envelope, Golgi apparatus, the endoplasmic reticulum,
and B-Actin (Figure 1C). Our results show that EP1 re-
ceptors were localized in the ER membrane, EP2 recep-
tors were uniformly expressed around the nucleus and
co-localized with the nuclear envelope marker, EP3 re-
ceptors were located at the plasma membrane, and EP4
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receptors at the Golgi apparatus. Hence, NE-4C cells
can act as an appropriate experimental model to study
PGE, signalling.

Prostaglandin E, increases the cell motility of
Whnt-induced NE-4C cell migration

The effect of PGE, on Wnt-dependent migration of
NE-4C cells was determined using Nikon Eclipse Ti-E
microscope with NIS Elements time-lapse tracking soft-
ware over a 24 hour period. Final distance, path length,
and average speed were quantified after exposure to 1 uM
PGE,, 2 uM Wnt Agonist (WntA), or 2 pM WntA with
the addition of 1 uM PGE,. The final distance was defined
as the distance between the initial and final positions of
the cell, represented as a straight line distance. The path
length was the total distance travelled from the initial to
the final cell position. The average speed of a cell was cal-
culated by dividing the total distance travelled by the time
it took to travel between the two positions.
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Figure 1 Expression of EP receptors’ mRNA and protein in NE-4C cells. (A) Real-time PCR was used to determine the RQ value for EP1, EP2, EP3q,
EP3(3, EP3y and EP4 receptors, which was found to be 2, 16, 1, 2, 46 and 46 respectively. The error bars represent + SEM. (B) Western blot analysis of the
EP1, EP2, EP3 and EP4 receptors expression (65, 68, 62 and 53 kDa, respectively). 3-Actin was used to indicate equal loading. (C) Immunocytochemistry
revealed the subcellular localization of EP1-4 receptors with specific organelles visualized through the use of anti-PDI endoplasmic reticulum marker,
anti-Lamin A + C nuclear envelope marker, S-Actin cell membrane marker, and anti-58 K Golgi marker. The scale bar represents 10 um.
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The results show that untreated NE-4C cells moved
an average final distance of 65.6 um following a 24 hour
period (Figure 2A). The addition of PGE, to the cells
resulted in a final distance of 56.2 pm which was not
significantly different from the untreated control
(65.6 pum). WntA only treatment resulted in a significant
decrease in final distance of 21.3 pm (p = 0.00242) when
compared to the control. The addition of PGE, to
WntA-treated cells resulted in a final distance of
45.0 um, which is an increase by 23.6 um (p = 0.04371),
as compared to WntA only-treated cells. It represents a
211% increase from the WntA-regulated movement.
Visualization of final distance through dispersion XY
position plots clearly illustrates that PGE, signalling
restores the Wnt-regulated suppression of cell move-
ment (Figure 2B, WntA + PGE2).
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The quantification of path length (Figure 3A) revealed
the same pattern. The path length of untreated cells was
458.9 um. As compared to untreated cells, PGE, only
treatment did not result in a significant change (408.6 pum),
but WntA treatment significantly decreased the path
length to 103.3 pm (p = 0.00189). Addition of PGE, to
WntA-treated cells led to a path length of 362.1 pm.
This is a 350% increase (p=0.00928) compared to
WntA only-treated cells.

Quantification of average speed showed that PGE,
treated cells travelled at a speed of 10.5 nm/s, which was
not significantly different from untreated NE-4C cells
that moved at a speed of 11.0 nm/s (Figure 3B). WntA
only treatment resulted in a decreased average cell speed
of 1.65 nm/s (p =0.00065). Addition of PGE, to WntA-
treated cells resulted in an average speed of 7.34 nm/s.
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Figure 2 PGE,-dependent effect on final distance travelled from origin. (A) Final distance from origin was 65.6, 56.2, 21.3, 45.0 um,
respectively. The error bars represent + SEM and values were considered significant at *p < 0.05, **p < 0.01. (B) The Dispersion XY position plots
illustrate the effect of PGE, on Wnt-induced behaviour, where addition of PGE, to Wnt-activated cells increased the final distance. Addition of
H89 (PKA blocker) and Wort (PI-3K) blocker reduces the effect PGE,. Measurements represent an average of 150 cells from three independent
experiments (N = 3).
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Figure 3 PGE,-dependent effect on path length and average speed. (A) Path length travelled was 459, 409, 103, 362 um, respectively.
(B) Average speed of migration was 11.0, 10.5, 1.7, 7.2 nm/s, respectively. The error bars represent + SEM, **p < 0.01, ***p < 0.001. Results represent
an average of 150 cells from three independent experiments (N = 3).

This suggests that addition of PGE, elevated the average
speed by 439%; an increase of 5.59 nm/s (p =0.00946)
when compared to WntA only-treatment.

In summary, administration of PGE, treatment leads
to significant changes in WntA-regulated cell behaviours
such as final distance, path length, and average speed.
PGE, treatment significantly restored the cell kinematic
measures which were suppressed by WntA treatment.

Prostaglandin E; modulates Wnt-induced cell behaviour
through PKA and PI-3K kinases

Previous studies in embryonic kidney and colon cancer
cells determined that the convergence of PGE, signalling
on the Wnt pathway occurred through the activation of
PKA or PI-3K [44-46]. To determine whether PGE,
treatment alters Wnt-induced cell migration behaviour
via these kinases in NE-4C cells, we used dihydrochloride
hydrate (H89) to block PKA and Wortmannin (Wort) to

block PI-3K. Our results show a trend across final dis-
tance, path length, and average speed (Figures 2 and 3).
With the addition of H89 to WntA + PGE, treated cells,
all cell motility measures significantly decreased compared
to the WntA + PGE, treated cells, resulting in movement
profiles that were not statistically different from the
WntA-only condition. Specifically, H89-treated cells
travelled a final distance of 20.32 pm from the origin
(p =0.02477), path length of 116.01 um (p = 0.00567),
and at an average speed of 1.37 nm/s (p =0.00073)
(Figure 2A and 2B).

With the addition of Wort to WntA + PGE, treated
cells, there was a decreasing trend in final distance and
path length but it was not significantly different from
PGE, + WntA treated cells. Only average speed signifi-
cantly decreased to 2.76 nm/s (N =3; p =0.00422) com-
pared to the WntA + PGE, treatment. Post hoc Dunnett
t-test revealed that measurements from the H89 and
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Wort conditions were not significantly different from
the WntA-only treatment, indicating that H89 and Wort
significantly diminished the effect of PGE, on WntA-
treated cells. This indicates that PGE, likely acts through
PKA and PI-3K to elicit effects on the WntA-dependent
cell motility. However, it appears that H89 may have had
a greater effect, suggesting that PGE, may predominately
act through PKA.

Prostaglandin E; alters cell proliferation behaviour of
NE-4C cells induced by Wnt agonist treatment

Previous literature reveals that PGE, may also affect cell
proliferation via the Wnt signalling pathway in prostate
and colon cancer cells [37] and hematopoietic [38] and
mesenchymal [39] stem cells. We studied the effects of
PGE, on NE-4C cell proliferation using NIS Elements
software. The cells were exposed to 1 uM PGE,, 2 pM
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WntA, or 2 pM WntA with the addition of 1 pM PGE,.
Furthermore, H89 or Wort was added to PGE, + WntA
treated cells to determine the effective role of these
kinases. The initial number of cells was compared to the
final number of cells following 24 hours treatment.
PGE, treatment led to an increase in cell number by
4.60-fold, which was not significantly different from the
untreated cells that proliferated by a 4.59 fold-increase
(Figure 4A). Administration of WntA resulted in a fold-
change of 0.86 (p <0.001) which was significantly lower
than untreated cells. Addition of PGE, to WntA-treated
cells (WntA + PGE,) resulted in a fold-change of 1.03,
which was not significant from the WntA only treated
condition. Although we observed lower levels of prolif-
eration in the WntA, WntA + PGE, and WntA + PGE, +
Blocker conditions, we confirmed no change in cell viabil-
ity between the conditions tested (Figure 4B).
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Figure 4 PGE,-dependent effect on proliferation behaviour. (A) Over the experimental duration of 24 hours, the number of cells changed by
a fold of 4.60, 4.59, 0.86, 1.03, respectively. (B) Cell viability across treatment conditions was not significantly different. (C) Percentage of successful
split ratio was 100%, 98%, 0%, 15%, 0%, and 0% respectively. The error bars represent + SEM, ***p < 0.001. Measurements represent an average of
150 cells from three independent experiments (N = 3). (D) WntA treatment resulted in an arrested state indicted by the black arrows and
corresponded with a significant decrease in cell proliferation (***p < 0.001). Scale bar represents 100 um.
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However, we observed distinct differences in cell pheno-
type between the WntA, WntA + PGE, and WntA + PGE,
with H89 or Wort treatment. A majority of the cells
treated with WntA adopted a shiny circular shape (indi-
cated by black arrows, Figure 4D). This was not as preva-
lent in the WntA + PGE, condition. However, the cells
treated with WntA + PGE, and Wort blocker, adopted the
shiny circular phenotype seen in the WntA condition.
Cells treated with WntA + PGE, and H89 blocker adopted
a circular appearance as well but a smaller population of
these round cells were shiny.

Our experiments showed that cell viability was not
affected but a distinct shiny circular cell appearance was
observed, which is characteristic of a cell just prior to
splitting into two daughter cells. Therefore, we also
quantified the split percentage, defined as the percentage
of cells that successfully divided into two daughter cells
during the recorded time period. As expected, the NE-4C
untreated cells demonstrated a split percentage of 100%
(Figure 4C), indicating that all cells entering a mitotic
phase resulted in cell division. A similar pattern was seen
in PGE,-treated cells (97.5%). However, treatment of
WntA resulted in a significant decrease of split percentage
to 0% (p < 0.001), where mitotic cells appeared to become
arrested in a round stage denoted in Figure 4D (WntA
Image) with black arrows. The addition of 1 uM PGE, to
WntA-treated cells produced a significant increase in split
percentage to 14.7% (p < 0.001, Figure 4C) as compared to
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WntA only treatment. The cells appear to resume their
flat morphology. These results suggest that PGE, treat-
ment can modify Wnt-induced proliferation behaviour
such as split percentage. Following treatment with either
H89 or Wort, cells returned to a split percentage of 0% as
seen with WntA only treatment (Figure 4C, D). This again
indicates that PGE, likely acts on the Wnt pathway
through PKA and PI-3K to modify cell proliferation.

To further confirm our results of the cell splitting behav-
iour, we measured the level of Phospho-Histone H3 (Ser10)
(Figure 5) since phosphorylation at Serl0 is tightly associ-
ated with chromosome condensation and segregation that
occurs during mitosis [47-49]. Compared to untreated cells,
PGE, only-treated cells did not display a significant differ-
ence. However, when compared to untreated NE-4C cells,
cells treated with WntA, WntA + PGE, and WntA + PGE,
with H89 or Wort treatment led to a significance increase
in Phospho-Histone H3 (Ser10) expression. RQ values were
1.35 (p=0.033), 152 (p = 0.001), 1.36 (p = 0.027), and 1.58
(p =0.005), respectively. This revealed that although cell
numbers were lower under these conditions, the relative
expression of Phospho-Histone H3 (Ser10) was significantly
higher, indicating that a greater percentage of cells were
undergoing mitosis when exposed to these treatments com-
pared to untreated cells. This correlates with our finding
that a larger proportion of cells under these conditions
adopts and seems to be arrested in a round stage charac-
teristic of cells undergoing mitosis.
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Figure 5 PGE,-dependent effect on phospho-histone H3 (Ser10) expression. Western blot analysis was used to determine Phospho-Histone
H3 (Ser10) protein (17 kDa). The expression of Phospho-Histone H3 (Ser10) represented in fold change was 1, 1.04, 1.35, 1.52, 1.36, and 1.58,
respectively. The error bars represent + SEM and values were considered significantly different from untreated *p < 0.05, **p < 0.01. Average
measurements represent protein from three independent experiments (N = 3). 3-Actin was used to indicate equal loading.
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Prostaglandin E; increases active 3-catenin expression in
Whnt-induced NE-4C cells

[-catenin is a key effector in the canonical Wnt signalling
pathway that regulates downstream gene transcription
[50]. B-catenin levels can be intricately regulated at mul-
tiple phosphorylation sites. Phosphorylation at Ser33,
Ser37, and Thr41 leads to its destabilization and primes it
for degradation [51], while phosphorylation at Ser552 has
been correlated with p-catenin nuclear accumulation
[52,53]. We tested the levels of non-phospho-(the active
form) B-catenin (Ser33/37/Thr41) and phospho-[3-catenin
(Ser552). The addition of PGE, only to NE-4C cells did
not significantly change the levels of either form of
[B-catenin (Figure 6A and B). However, adding PGE, to
WntA-induced NE-4C cells lead to a significant 2.1 fold
increase in non-phospho-(active) p-catenin (Ser33/37/
Thr41) levels compared to the WntA only treated condi-
tion (Figure 7A). There was no significant difference in
Phospho-p-catenin (Ser552) levels between the sample
conditions (Figure 7B), suggesting that phosphorylation of
[-catenin at Ser552 is likely not involved with the behav-
ioural differences in NE-4C cells described earlier. These
results indicate that PGE, may interact with the canonical
Wnt signalling pathway by regulation of non-phospho-
(active) Bp-catenin (Ser33/37/Thr41) levels.

Prostaglandin E, regulates expression of Wnt-target
genes in Wnt-induced NE-4C cells

To investigate whether the addition of PGE, can influence
gene transcription relevant to the canonical Wnt pathway,
we screened 29 target genes using Custom TagMan® Array
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Plates. We found that Ctnnbl, Ptgs2, Ccndl, and Mmp9
were differentially regulated (data not shown). Their
expression was confirmed with real-time PCR using RNA
derived from the same treatment conditions used for be-
havioural analyses, which includes 1 uM PGE,, 2 uM Wnt
Agonist (WntA), or 2 pM WntA with the addition of 1 uM
PGE,. Kinase blockers (H89 or Wort) were added to PGE,
+ WntA treated cells to determine the potential contribu-
tion of PKA and PI3K activity via PGE, signalling. Our
real-time PCR results indicate that PGE, affects the expres-
sion levels of all Wnt-target genes tested (Figure 8).

Ctnnbl (beta-catenin) levels were not altered with the
addition of PGE, when compared to untreated NE-4C
cells, but cells treated with WntA showed a significant
increase of RQ value 1.25 (p = 0.0372). Addition of PGE,
to WntA-induced cells led to a further increase of Ctnnbl
level to an RQ value of 1.55, which was significantly dif-
ferent from the WntA-only condition (p = 0.0131). This
pattern was consistent with the expression of phospho
(active) B-catenin (Ser33/37/Thr41) protein quantified
earlier using Western blot analysis. Addition of H89 or
Wort to PGE, + WntA treated cells resulted in RQ values
to 0.83 and 0.60, respectively, compared to untreated cells
which was a significant decrease compared to the PGE, +
WntA condition (p >0.001, p >0.001). The PKA and PI3K
blockers, H89 and Wort, appeared to remove the effect
of PGE, on Ctnnbl expression in WntA-induced cells,
while also reversing the influence on CtnnbI levels from
WntA-only treatment. This suggests that PKA and PI3K
signalling may modify Ctnnbl expression through PGE,
signalling.
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Figure 6 PGE,-dependent effect on (3-catenin expression in NE-4C cells. Western blot analysis was used to determine two forms of active
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Figure 7 PGE,-dependent effect on -catenin expression in Wnt-activated NE-4C cells. Western blot analysis was used to determine two
forms of active B-catenin: non-phospho-(active) 3-catenin (Ser33/37/Thr41) and phospho-B-catenin (Ser552) (92 kDa). (A) The expression of active
B-catenin represented in fold change was 1, 2.09, 1.61, and 1.98, respectively. The error bars represent + SEM and values were considered significantly
different from control at *p < 0.05. Only PGE, + WntA condition was significantly different from WntA only condition. (B) There was no significant
difference in phospho-B-catenin (Ser552) expression between the conditions. Average measurements represent protein from three independ-

ent experiments (N = 3). B-Actin was used to indicate equal loading.

NE-4C cells treated with PGE, alone had a significant
decrease in Ptgs2 (prostaglandin-endoperoxide synthase
2; gene encoding COX-2) mRNA levels compared to un-
treated cells (RQ =0.56, p <0.001), while cells treated
with WntA had a significant increase of RQ value 2.99

(p =0.00286). In contrast, when PGE, was added to
WntA-induced NE-4C cells, Ptgs2 expression was fur-
ther elevated with an RQ value of 4.59 compared to
untreated. This value was significantly different from the
PGE, + WntA condition (p =0.015). Addition of H89 or
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Figure 8 PGE,-dependent effect on Wnt-target genes. Real-time PCR was used to determine the RQ value for Ctnnb1, Ptgs2, Ccndl, and
Mmp?9. The expression of Ctnnb1 represented in fold change was 1, 0.97, 1.25, 1.55, 0.84, and 0.60, respectively. The fold change expression of
Ptgs2 was 1,056, 2.99, 4.59, 2.16, and 4.22. The fold change expression of CcndT was 1, 3.68, 1.50, 1.99, 0.74, and 142. Mmp9 fold change expression
was 1, 1.08, 2.19, 3.00, 2.16, and 2.68, respectively. The error bars represent + SEM and values were considered significantly different from control
at *p < 0.05, **p < 0.01, and ***p < 0.001. Average measurements are from three independent experiments (N = 3).
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Wort to PGE,+ WntA treated cells resulted in RQ
values of 2.16 and 4.22, but only the H89 treatment was
significantly different from the PGE, + WntA condition
(p<0.001). This suggests that the effect of PGE, on
WntA-induced cells may be through PKA.

Expression of Ccndl (cyclin D1) was also altered. Ad-
ministration of PGE, treatment to NE-4C cells corre-
lated with a significant increase of an RQ value to 3.68
(p=0.045) compared to untreated cells, while WntA-
treated cells had a significant increase of RQ value to 1.50
(p =0.048). Addition of PGE, to WntA-activated cells was
associated with a further increase of Ccndl expression,
with an RQ value 1.99 compared to untreated cells, which
was significantly different from WntA-only treated cells
(p=0.047). H89 or Wort added to PGE, + WntA treated
cells had RQ values of 0.74 and 1.42, respectively, which
was significantly different from the PGE, + WntA condi-
tion (p = 0.0054, p = 0.0078). The blockers, H89 and Wort,
seemed to attenuate the increase of Ccndl levels associ-
ated with the addition of PGE, to WntA-induced cells.

In comparison to untreated NE-4C cells, PGE, treat-
ment did not change levels of Mmp9 (matrix metallopro-
teinase 9). However, when compared to WntA-induced
NE-4C cells, addition of PGE, treatment to WntA-treated
cells caused a significant increase in expression level
(p <0.001). Specifically, with WntA treatment, Mmp9
expression was significantly elevated to an RQ value of
2.19 (p<0.001) compared to untreated cells, but addition
of PGE, to WntA-induced cells resulted in a further rise
of Mmp9 expression with an RQ value of 3.00. H89 and
Wort were added to PGE, + WntA treated cells and RQ
values for Mmp9 were 2.16 and 2.68, respectively, com-
pared to the untreated condition. These values were sig-
nificantly different from the PGE,+ WntA condition.
This indicates that the use of H89 and Wort diminished
the increase in Mmp9 expression as a result of PGE,
treatment on WntA-induced cells.

Opverall, these results demonstrate that PGE, can raise
the expression of Wnt-target genes, specifically, Ctnnbli,
Ptgs2, Cendl, and Mmp9, in WntA-induced NE-4C cells.
Since H89 and Wort attenuated the changes caused by
PGE,, PKA and PI3K likely serve as a molecular link for
the interaction between the PGE, and canonical Wnt
signalling pathways.

Discussion

Cell migration and proliferation are crucial components
of neural development. Previous studies have shown that
elevated levels of PGE, can result in increased cell motility
and proliferation in various non-neuronal cells [46,54-56].
Recent evidence indicates that abnormalities in cell be-
haviour can result from the interaction between PGE,
with Wnt signalling pathways [44,57]. Our current
study provides evidence, for the first time, for the cross-
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talk between these two pathways in neural stem cells.
We report that PGE, treatment elicits changes in cell
behaviour such as an increase in components of cell
motility and proliferation, as well as expression of Wnt-
target genes, in Wnt-activated NE-4C stem cells. More-
over, the stimulatory effects of PGE, are subdued through
the inhibition of downstream pathway kinases, PKA and
PI-3K, suggesting that PGE, acts through these particular
kinases to converge with the Wnt pathway.

Previous studies have shown that PGE, can increase
or decrease the activity of canonical Wnt signalling.
PGE, activates several components of the canonical Wnt
pathway in colorectal cancer cells (reviewed in [42]).
Specifically in these cells, PGE, stimulated a significant
increase in the activity of Wnt transcription factors, T
cell factor-4 (Tcf-4), as well as elevated protein levels of
Wnt-target genes [58]. PGE, acted through its EP2 recep-
tor to modulate B-catenin activity of the Wnt pathway,
promoting the growth of colon cancer cells [44]. Wnt
activation induced by PGE, also contributed to abnormal
proliferation resulting in enhanced gastric tumorigenesis
[57]. Furthermore, PGE,-regulated Wnt signalling had a
hepatoprotective effect, aiding in liver regeneration [59].
In pre-osteoblastic cells, concentration-dependent treat-
ment of PGE, modulated Wnt signalling by altering
protein expression of pathway activators, -catenin and
low-density lipoprotein receptor-related protein 5/6 (LRP
5/6), as well as Wnt inhibitor, dickkopf-1 (DKK-1); low
doses of PGE, promoted the Wnt pathway while high
doses inhibited it [37]. PGE, also modified Tcf-luciferase
activity of Wnt signalling through the same dose effect
[37]. Additionally, in human colorectal adenoma and car-
cinoma cells, PGE, treatment up-regulated the protein ex-
pression of the Wnt target gene, leucine-rich G-protein
coupled receptor 5 (LGR5), which internalizes FZD co-
receptor LRP6 and decreases Wnt activity [60]. Altogether,
these studies reveal that the interaction between PGE, and
Wt signalling can have different effects depending on the
dose of PGE, administered and the specific cell type.

We reveal that PGE, increases the final distance and
path length travelled, as well as the average speed of mi-
gration in Wnt-activated neuroectodermal stem NE-4C
cells. We also show that PGE, alters the phenotype of
Wnt-treated cells, which corresponds to an increase in
split percentage. Aberrations in cell motility and prolifer-
ation behaviour could have detrimental effects to early
development of the nervous system. This is because
proper neural development requires an orchestrated sys-
tem of cellular events, such as migration and proliferation,
to occur over particular windows of time [61]. Careful
control of these crucial neurobiological processes during
prenatal development is required for the formation of
complex layered structures in the brain like the cerebral
cortex, hippocampus, and cerebellum [62,63].
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Our study adds to the current body of research by
showing that PGE, interferes with the Wnt pathway by
attenuating Wnt-dependent cell behaviour in NE-4C cells.
This is important because Wnt signalling is involved in a
myriad of regulatory processes important for the develop-
ment and organization of the nervous system [64]. It is
thoroughly established that Wnt signalling is instrumental
to normal anterior-posterior patterning of the embryo
[65]. Wnt proteins are key regulators for the formation of
the neural tube, as well as neuronal migration and differ-
entiation [40,64]. Wnt signalling also modulates neurite
outgrowth [66], axon growth and guidance [67-70], den-
dritic development and arborization [71,72], radial migra-
tion [73], and synapse formation and plasticity [74,75].
Moreover, Wnt signalling is crucial in neuronal fate de-
termination, particularly in the specification and differ-
entiation of neuronal precursors in the midbrain [76]
and forebrain [77,78]. Furthermore, epithelial stem cells
require Wnt/B-catenin signalling for proliferation and
quiescent division [79] and the balance between re-entry
and exit of the cell cycle can be altered by Wnt/[-catenin
signalling [80]. Additionally, aberrant cortical progenitor
cell proliferation patterns and defective hippocampus de-
velopment can result due to abnormal Wnt signalling
[81]. Interestingly, recent findings provide evidence that
defective Wnt signalling could contribute to the pathogen-
esis of psychiatric disorders like schizophrenia and ASD
[82-84]. Specifically, Wnt2, located in the putative
speech and language region at chromosome 7q31-33,
has been identified as a susceptibility gene for autism.
[85,86]. Given the importance of Wnt signalling in pre-
natal development and the existing interaction between
Wnt and PGE, pathways in NE-4C stem cells, alter-
ations in levels of PGE, via endogenous and exogenous
means may have profound effects on nervous system
development.

In addition to quantifying cell behaviour, we also demon-
strate that PGE, can affect the expression of non-phospho
(active) B-catenin (Ser33/37/Thr41). Wnt/B-catenin signal-
ling occurs through a complex, highly regulated pathway
that involves the phosphorylation of multiple sites on
[-catenin, which may promote its degradation or activa-
tion and subsequent nuclear internalization. For instance,
the phosphorylation of sites Ser33, 37, and Thr41 targets
[B-catenin for ubiquitination and proteasomal degrada-
tion [87,88]. Quantification of [B-catenin that is non-
phosphorylated at these sites has become a common
measurement for active or stabilized -catenin expression.
Phosphorylation of B-catenin at the site Ser552 has also
been correlated with increased p-catenin/TCF medi-
ated transcriptional activity [89,90]. We found that PGE,
treatment administered to Wnt-activated cells increased
the expression of non-phospho (active) [-catenin
(Ser33/37/Thr41) protein. In contrast, the phospho- f3-
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catenin (Ser552) levels remained unchanged. It has been
established that the regulation of glycogen synthase kin-
ase 3 beta (GSK3p) activity may control stabilization of
B-catenin and increased levels of non-phospho (active)
B-catenin (Ser33/37/Thr41) protein [91]. It is possible
that PGE, signalling may modify GSK3p activity but this
remains to be determined. Nonetheless, the increased
levels of non-phospho (active) B-catenin (Ser33/37/Thr41)
quantified were in line with our gene expression results
that also showed an increase in Ctnnbl expression as well
as other Wnt-target genes. Ctnnbl encodes for the
[-catenin protein, which can regulate cell growth and ad-
hesion and is also a key downstream component of the ca-
nonical Wnt pathway. It has also been shown to regulate
cortical size; enlarged cortices with increased cortical folds
were observed in Ctnnbl transgenic mice [80]. Interest-
ingly, brain overgrowth and abnormal excess in number
of neurons was measured in children with autism [92].
Gene expression of Ctnnbl was altered in both young
and adult autistic cases [93]. Furthermore, de novo mu-
tations of this gene and its relevant network have been
ranked significantly as potential autism candidate genes
[94,95]. Within the canonical Wnt pathway, the
[B-catenin/TCF complex can promote the transcription
of target genes including Ptgs2 [96], Ccndl [97,98], and
Mmp9 [99,100]. Expression of these genes was in-
creased as an effect of elevated PGE, signalling in our
study, and interestingly, previous studies have reported
a link between these genes and ASD as described below.
Ptgs2, also known as COX-2, is the key enzyme in
prostaglandin biosynthesis, including the production of
PGE,. COX-2 is a crucial mediator of inflammation and
prostanoid signalling [101,102]. Polymorphism of Ptgs2
has been associated with ASD [103]. A recent clinical
study proved the efficacy of a COX-2 inhibitor drug, cele-
coxib, as an adjunctive therapy in the treatment of autism:
the treatment was superior for treating irritability, social
withdrawal, and stereotypy of children with autism [104].
Another gene affected was Ccndl. This gene encodes
for a protein in the cyclin family, which are important
regulators in cell cycle progression, transcription, and neur-
onal function [105,106]. The increased levels of Ccndl,
as a result of added PGE,, may be involved with the al-
tered proliferation behaviour visualized in this study.
Aberrant Ccndl levels have also been associated with
ASD. In autistic rat pups (model encompassed adminis-
tration of valproic acid), Ccndl expression was atypical
in the cerebellum compared to controls [107]. Another
study showed that the dysregulation of Ccndl lead to
abnormal cell cycle and proliferation, neuronal and net-
work excitability and behaviour, and revealed its poten-
tial link to human neuro-cardio-facial-cutaneous and
related syndromes, which are associated with developmen-
tal abnormalities, cognitive deficits, and autism [108].
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Diminished expression of 22q11 genes, which disrupts
cortical neurogenesis and cell migration, led to alterations
in Ccndl levels [109]. The authors explain that a develop-
mental disruption, as such, may alter cortical circuitry and
establish vulnerability for developmental disorders, includ-
ing schizophrenia and autism.

Mmp?9 is a membrane of the matrix metalloproteinase
(MMP) family, which can target many extracellular pro-
teins including proteases, growth factors, and adhesion
molecules [110] and are involved with the breakdown of
the extracellular matrix in normal physiological processes
such as embryonic development and tissue remodelling
[111]. MMPs are also important in neuronal development,
plasticity, and maintenance of neuronal health [112].
Mmp9 has also been shown to regulate the proliferation
and migration of embryonic neural stem cells [99] and
participate in neuronal differentiation by regulating neur-
ite elongation and neuronal cell migration [113-115].
Therefore, altered Mmp9 expression may contribute to
the deviant behaviour observed in our study. Mmp9 has
also been associated with ASD [116]. Elevated levels of
MMP9 protein were found in the amniotic fluid of ASD
cases compared to controls [117]. Findings from this study
provide evidence that molecular and physiological abnor-
malities in ASD may begin prenatally. Mmp9 has also
been implicated in Fragile X syndrome (FXS) [118], which
is characterized by behaviours at the extreme of the
autistic spectrum. Using in a mouse model of fragile x
(Fmrl KO), levels of MMP9 was found to be elevated
in the hippocampus of Fmrl KO mice [119]. Furthermore,
Minocycline, a drug that inhibits MMP9 activity, has been
shown to promote dendrite spine maturation and improve
behavioural performance in Fmrl KO mice [119]. These
researchers continued their work in human trials and
found that Minocycline taken as a daily dose for 8 weeks
led to behavioural improvements in FXS patients. This
was consistent with their fmrl KO mouse model results,
indicating that MMP9 activity alters underlying neural
defects that contribute to behavioural abnormalities seen
in ASD [120].

Taken altogether, our gene expression results not only
show a potential interaction of the PGE, and canonical
Wnt pathway in the nervous system, but also provide
further evidence for a link to ASD.

We show that PGE, interacts with canonical Wnt sig-
nalling through PKA and PI-3K to produce the reported
behavioural changes in cell motility and proliferation, as
well as gene expression. Specifically, we found that inhibit-
ing these PGE, downstream pathway kinases, PKA and
PI-3K with H89 and Wort respectively, reduced the effect
of PGE,. This is in line with previous literature, which
found that the convergence of PGE,-dependent effects
and the Wnt pathway can occur through the stimulation
of PKA or PI-3K in embryonic kidney cells and colon
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cancer cells [44-46]. Moreover, similar stimulatory effects
on cell migration induced by PGE, in Wnt-activated NE-
4C cells from our study were also exhibited in prostate
cancer cells through the activation of PI-3K [121]. Our re-
sults revealed that H89 had a stronger effect than Wort,
suggesting that PGE, may predominately act through
PKA; but future studies are needed to determine which EP
receptors are involved. A proposed model is provided in
Figure 9.

Increasing evidence for the contribution of environ-
mental factors in the etiology of neurodevelopmental
disorders like ASD has prompted urgency to reveal their
potential exogenous causes and underlying mechanisms
[122]. Environmental factors like exposure to drugs, toxins
or infectious agents cause disruptions in PGE, signalling
by increasing the levels of oxidative stress, consequent
lipid peroxidation, and the immunological response; these
factors and consequences that disturb normal PGE, sig-
nalling have all been linked to ASD [123]. We show that
increased PGE, signalling can modify cell migration,
proliferation behaviour, and gene expression in Wnt-
activated NE-4C stem cells. Aberrant cell migration and
proliferation are pathophysiologic mechanisms that im-
pact the brain broadly, and could be possible factors
that contribute to the origination of neurodevelopment
disorders. Abnormalities in structure, organization, and
connectivity of the brain are all indicators of irregular
neural cell migration and proliferation. Local distortions
in neural cytoarchitecture, dysplasia, and hypoplasia
have been described in brains of autistic subjects [124].
Moreover, structural abnormalities and atypical con-
nectivity of the brain in ASD has been identified by a
number of research groups [123,125-128]. Noteworthy,
areas of the brain that would be most impacted by
dysregulation in neuronal migration and proliferation—
that is the cerebellum, cerebral cortex, and hippocampus—
are also implicated in ASD [124,129-131]. Despite the
assumptions that can be made from our in vitro results,
in vivo models must be employed to further describe
the possible effects of PGE, and its interaction with
morphogenic signalling pathways, such as Wnt, during
prenatal development.

Conclusions

PGE, is an important bioactive lipid signalling mol-
ecule and its interaction with Wnt signalling pathway
could have significant effects on prenatal development.
Our study shows for the first time that PGE, can affect
Wnt-dependent cell behaviours and gene expression in
neuroectodermal stem cells through PKA and PI-3K.
Aberrant PGE, and Wnt signalling have been linked to
ASD. Moreover, altered migration and proliferation due
to irregular gene expression during embryonic develop-
ment in ASD have been suggested in previous studies.
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Our in vitro study provided further evidence that these
aberrations may be potential mechanisms in the genesis
of neurodevelopment disorders like ASD.

Methods

Cell culture

Mouse NE-4C cells were obtained from American Tissue
Culture Collection (ATCC) and grown in Minimum
Essential Medium (MEM) supplemented with 10% fetal
bovine serum, 2 mM glutamine, 1 X penicillin-streptomycin
mixture (Invitrogen). Cells were maintained in an incu-
bator containing 5% CO, at 95% humidity 37°C. Cells
were plated on 0.01% poly-L-lysine (Sigma) coated
100 mm culture plates (BD Falcon) and were subcul-
tured at a 1:10 ratio. Supplemented MEM was changed
every 2—3 days.

Cell culture-treatments

NE-4C cells (ATCC) were dissociated with 0.05% trypsin-
EDTA, pelleted and resuspended in complete medium as
described above. The cells were plated on poly-L-lysine
0.01% (Sigma, MW 70000—150000 kDa) on 35 mm tissue
culture dishes (Sarstedt). Plated cells were incubated in 5%

CO, at 95% humidity 37°C overnight before treatment
with Wnt Agonist (WntA, Calbiochem), prostaglandin
E, (PGE,, Sigma) and/or blockers. WntA (2 uM), PGE,
(I uM), H89 dihydrochloride hydrate (H89, 10 puM,
Sigma), Wortmannin (WORT, 1 pM, Sigma) or an
equivalent volume of vehicle were added to each well.
Cells were treated for 24 hours.

Reverse transcription and real-time PCR

Total RNA was extracted from NE-4C cells using the
NucleoSpin RNA/Protein Kit (Macherey-Nagel) and was
reverse-transcribed into ¢cDNA using MMuLV reverse
transcriptase (New England Biolabs) according to manu-
facturer’s instructions. Primer3 Input software (v. 0.4.0)
was used to design forward and reverse primers for EP
receptors and have been previously noted [12]. Selection of
Wnt-target genes was determined using Custom TagMan®
Array Plates (Life Technologies) as a screening tool (data
not shown). Genes that had a greater than 1.8 fold-change
were selected for further validation and forward and reverse
primers were designed (Table 1). Real-time PCR was
performed using the 7500 Fast Real-time PCR system
(Applied Biosystems) and the AACt method was applied
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Table 1 Forward and reverse primer sequences for
real-time-PCR

Amplicon

Gene size (base pair)

Primer sequences (5" — 3)

y F: TCCATTCCTATGACTGTAGA ATCAG o
rt
g R: AAC ATGTCCCCCGTTGACT

Pkl F: CAGTTGCTGCTGAACTCAAATCTC p
7 R: GCCCACACAATCCTTCAAGAA

Pras2 F: CAGCCAGGCAGCAAATCC 81
tgs.
g R: TTATACTGGTCAAATCCTGTGCTCAT

F: GGACGTTCACAACCGGATTG
Ctnnbl 71
R: GAGAATAAAGCAACTG CACAAACAA

F: GCACTTTCTTTCCAGAGTCATCAA
Cendl! 79
R: CTCCAGAAGGGCTTCAATCTGT

F: TCGCGTGGATAAGGAGTTCTCT
Mmp9 73
R: ATAGGCTTTGTCTTGGTACTGGAAGA

to calculate the expression of transcripts. Hypoxanthine
phosphoribosyl transferase (HPRT) and Phosphoglycerate
Kinase 1 (PGK1) served as endogenous controls. The rela-
tive quantification (RQ) ratios were determined from the
average of three technical replicates from three biological
replicates.

Western blot analysis

Total protein was extracted from NE-4C cells using the
NucleoSpin RNA/Protein Kit (Macherey-Nagel). Samples
were separated by polyacrylamide gel electrophoresis
(PAGE). Primary antibodies used for EP expression levels
include rabbit polyclonal anti-EP1, -EP2, -EP3, —-EP4
(1:200; Santa Cruz Biotechnology). Detection of rabbit
monoclonal anti-Phospho-Histone H3 (Ser10) (1:1000;
Cell Signaling) was used as a measure of cell splitting be-
haviour. Primary antibodies used for -catenin expression
levels were rabbit monoclonal anti-non-phospho (Active)
B-catenin (Ser33/37/Thr41) and rabbit polyclonal anti-
phospho-f-catenin (Ser552) (1:1000; Cell Signaling). Blots
were reprobed with mouse monoclonal anti-5-Actin
(1:10,000; Abcam). Visualization of bound anti-rabbit and
anti-mouse horseradish peroxidise-conjugated secondary
antibodies was achieved by incubation with ECL Prime
Western Blotting Detection Reagent (GE Healthcare) and
detection by Geliance 600 Imaging System (Perkin Elmer).

Immunocytochemistry

NE-4C cells were seeded onto 35 mm culture plates
containing poly-L-lysine coated coverslips and grown
overnight at 37°C. The cells were fixed with 50% acetone
and 50% methanol for 20 minutes at —20°C and washed
with phosphate buffered saline (4.3 mM Na,HPO,,
137 mM NaCl, 2.7 mM KCl, 1.4 mM KH,PO,). Cells
were then incubated with primary antibodies in PBS
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with 0.3% Triton-X 100 and 2% Normal Goat Serum.
Cellular localization of the EP receptors was determined
by incubation with anti-EP primary antibodies as de-
scribed above along with mouse monoclonal anti-Lamin
A + C nuclear envelope marker (1:200; Abcam), anti-
58 K Golgi marker [58 K-9] (1:100; Abcam), anti-PDI
endoplasmic reticulum marker [RL90] (1:100; Abcam) or
B-Actin (1:1000; Abcam) at room temperature for 1 hour.
Following primary antibody incubation, cells were washed
three times with PBS-T for 15 min and incubated with
secondary antibodies in PBS-T and 2% NGS for 1 hour at
room temperature in the dark. Secondary antibodies used
were anti-rabbit fluorescein isothiocyanate (FITC) (1:100;
Jackson ImmunoResearch Laboratories) and anti-mouse
Texas Red (1:200; Jackson ImmunoResearch Laboratories).
Cells were then washed twice with PBS-T for 10 min,
followed by a 20 minute incubation of 4’,6-diamidino-
2-phenylindole (DAPI) (1:2000; Molecular Probes) at
room temperature. Cells were washed twice with PBS-T
for 5 min and coverslips were mounted on glass micro-
scope slides with mounting media (Vectashield). The
staining was visualized and captured using an Eclipse
80i upright fluorescent microscope with DS-5MC camera
(Nikon).

Time-lapse imaging and analysis

Cell behaviour was recorded using Nikon Eclipse Ti-E
microscope. Three biological replicates of each treatment
condition were performed (N =3), where an average of
150 cells were tracked. Micrographs were automatically
captured every 10 minutes for a 24 hour period from a
minimum of three fields. To maintain conditions physiolo-
gically suitable for the cells, an enclosed chamber was
mounted to the microscope, which was equipped with
CO, supply and temperature thermostat. Cells were kept
at 5% CO,, 95% humidity, 37°C. Measurements were com-
pleted using NIS Elements software, including a special-
ized tracking module. Final distance from origin, path
length, and average speed were tracked and calculated
from an average of 150 cells per treatment condition. Ini-
tial and final cell counts were used to determine fold
change as a measurement of proliferation. Split percentage
was quantified as a measurement of proliferation behav-
iour. Split percentage was defined as the percentage of
cells that fulfilled the complete cell cycle, which was evalu-
ated based on whether the parent cell could successfully
split into two daughter cells.

Cell viability analysis

Cells were disassociated and diluted with equal volumes
of trypan blue dye (4%). Cell count averages were taken
from a minimum of four hemacytometer squares to deter-
mine cell number and viability.



Wong et al. Cell Communication and Signaling 2014, 12:19
http://www.biosignaling.com/content/12/1/19

Statistical analysis

All numerical data were presented as mean + SEM of
three individual experiments. Statistical analysis was
performed using student t-test or one-way analysis of
variance (ANOVA) followed by Tukey post-hoc compar-
isons or Dunnett t-test (2-sided). Differences were con-
sidered statistically significant at *p < 0.05, **p <0.01, or
**p < 0.001.
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