
Park et al. Cell Communication and Signaling 2013, 11:74
http://www.biosignaling.com/content/11/1/74
RESEARCH Open Access
Zinc inhibits osteoclast differentiation by
suppression of Ca2+-Calcineurin-NFATc1 signaling
pathway
Kwang Hwan Park1,2,4,5, Boryung Park3, Dong Suk Yoon2, Seung-Hyun Kwon1, Dong Min Shin3, Jin Woo Lee2,
Hyun Gyu Lee1, Jae-Hyuck Shim5, Jeon Han Park1,4 and Jae Myun Lee1,4*
Abstract

Background: Zinc, an essential trace element, inhibits osteoclast differentiation in vitro and in vivo. The molecular
mechanism for the inhibitory effect of zinc, however, is poorly understood. The purpose of this study was to
investigate the effect of zinc and determine its molecular mechanism on receptor activator of NF-κB ligand
(RANKL)-induced osteoclastogenesis in mouse bone marrow-derived monocyte cells (BMMs) and RAW264.7 cells.

Results: In BMMs, zinc treatment during osteoclast differentiation decreased RANKL-induced osteoclast formation in
a dose-dependent manner. We show that zinc suppressed the mRNA levels of nuclear factor of activated T-cells,
cytoplasmic 1 (Nfatc1). Zinc also accumulated phospho-Nfatc1 (p-Nfatc1) in the cytosol in a dose-dependent
manner and inhibited the translocation of Nfatc1 to the nucleus in RAW264.7 cells. Zinc suppressed the activities of
Nfatc1 in the nucleus without changing the activities of NF-κB in RAW264.7 cells. In contrast, calcineurin activity
decreased in response to zinc but its protein level was unchanged. RANKL-induced Ca2+ oscillations were inhibited
by zinc treatment, but phospho-phospholipase Cγ1 (p-PLCγ1), the upstream signaling molecule of Ca2+ oscillations,
was unaffected. Moreover, a constitutively active form of Nfatc1 obviously rescued suppression of
osteoclastogenesis by zinc.

Conclusions: Taken together, these results demonstrate for the first time that the inhibitory effect of zinc during
osteoclastogesis is caused by suppressing the Ca2+-Calcineurin-NFATc1 signaling pathway. Thus, zinc may be a
useful therapeutic candidate for the prevention of bone loss caused by NFATc1 activation in osteoclasts.
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Background
The balance between osteoclastogenesis and osteoblasto-
genesis is important for the maintenance of bone
homeostasis [1-6]. In particular, bone resorption by oste-
oclasts is involved in various skeletal diseases, such as
osteoporosis and arthritis. There have been many studies
about the various genes that are regulated during
osteoclastogenesis. Representative up-regulated genes are
Nfatc1, Fos, Oscar, and Ctsk and down-regulated genes
include Id, Mafb, Irf8, and Bcl6 [7-13].
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To identify novel genes involved in osteoclastogenesis,
we used two sets of microarray data from Gene Expres-
sion Omnibus (GEO) DataSets, which were comparative
microarrays in mouse bone marrow-derived monocyte
cells (BMMs) stimulated with or without receptor activa-
tor of NF-κB ligand (RANKL) [12,13]. We performed
statistical data analyses using the R program. From these
analyses, we found intersections between the two sets of
data. Among the intersections, Mt3, which is known to
regulate the intracellular level of zinc, and other zinc-
related genes were up-regulated (log2 ratio > 4.0) during
osteoclast differentiation (Additional file 1: Table S1). In
literatures, one report showed that dietary zinc and
Metallothionein (MT) interact in postnatal bone growth
[14]. Also, Lee et al. reported that zinc regulates T cell
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receptor signaling [15]. We thus suggest that zinc may
play an important physiologic role in osteoclastogenesis
signaling pathways.
Zinc is an important trace element for biological

signaling pathways, but also acts as a second messenger
in cells [16]. Zinc supplementation has been reported to
inhibit bone loss in an adjuvant-induced rheumatoid
arthritis rat model, promoting bone formation and
suppressing bone resorption [17]. Dietary zinc is also
reported to reduce levels of tartrate-resistant acid phos-
phatase (TRAP), which is a specific marker of osteo-
clasts in the tibia and calvaria in vivo [18]. In humans,
zinc intake negatively correlates with bone loss in post-
menopausal women [19] and positively correlates with
bone mass in premenopausal women [20,21]. Despite
persuasive studies that zinc is involved in bone loss by
suppressing osteoclast differentiation, the molecular
mechanism for the inhibitory effect of zinc on osteoclast
differentiation remains poorly understood.
In this study, to investigate the molecular mechanism of

the inhibitory effect of zinc on RANKL-induced osteoclast
differentiation, we focused on Nfatc1, a master transcrip-
tion factor of osteoclastogenesis [9,13,22-24]. Previously,
Mackenzie et al. reported that extracellular zinc can regu-
late NFAT activity in neuronal cells. So, we confirmed
Figure 1 Measurement of cell viability. (A) BMMs were cultured with M
(B) RAW264.7 cells were cultured with various concentration of ZnSO4 for 2
Data are presented as the mean ± S.D. of three independent experiments.
previously reported findings that zinc suppresses osteo-
clast differentiation in vitro. We discerned that its in-
hibitory mechanism was involved in blocking the
Ca2+-Calcineurin-NFATc1 signaling pathway.

Results
Zinc inhibits osteoclast formation and fusion from BMMs
To determine whether zinc is cytotoxic to BMMs and
RAW264.7 cells, we first examined the cells’ viability
using an EZcytox cell viability assay kit, which estimates
the number of surviving cells using WST-1 (4-[3-(4-
iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene
disulfonate). BMMs and RAW264.7 cells, which were each
treated with up to 200 and 100 μM ZnSO4, were viable for
4 days and 24 hours, respectively (Figure 1). We thus desig-
nated 100 μM ZnSO4 as the maximal concentration that
was nontoxic to both BMMs and RAW264.7 cells. We in-
vestigated the effects of zinc on osteoclast formation of
BMMs in vitro by treating BMMs with M-CSF and RANKL
in the presence or absence of zinc. Zinc treatment inhib-
ited osteoclast formation in a dose-dependent manner as
shown by a decrease in the number of TRAP-positive
multinucleated osteoclasts (Figure 2A). Notably, huge
TRAP-positive multinucleated osteoclasts (nuclei ≥ 6)
decreased in the zinc-treated group (Figure 2B). The
-CSF (30 ng/ml) and various concentrations of ZnSO4 for 4 days.
4 s. Cell viability was measured using EZcytox cell viability assay kits.
*P < 0.05 compared to control.



Figure 2 Zinc inhibits RANKL-induced osteoclast formation and fusion from BMMs. (A) BMMs were cultured for 4 days with M-CSF (30 ng/
ml), RANKL (120 ng/ml), and various concentrations of ZnSO4. The cells were stained for TRAP. (B) TRAP-positive multinucleated cells (nuclei ≥ 3)
were counted using manual counting and a nuclei-counter plug-in for the Image J program. (C) TRAP activity was measured at 540 nm. Data are
presented as the mean ± S.D. of three independent experiments; *P < 0.05 compared to control.
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TRAP activities of BMMs induced by RANKL were also
inhibited by zinc in a dose-dependent manner (Figure 2C).
These results suggest that zinc inhibits osteoclast forma-
tion and fusion.

Zinc suppresses Nfatc1 expression and transcriptional/
DNA binding activity
To elucidate the molecular mechanism of zinc’s inhibition
of osteoclast formation and fusion, we analyzed the mRNA
levels of genes during osteoclast differentiation in the pres-
ence of zinc. Among the many genes related to osteoclast
differentiation and fusion, the mRNA levels of Nfatc1, a
master regulator of osteoclast formation, and its target
genes, such as Acp5, Ctsk, Mmp9, Atp6v0d2, Dcstamp, and
Ocstamp [9,25], were decreased (Figure 3A). During
osteoclastogenesis periods in BMMs, the mRNA level of
Nfatc1 gradually increased due to auto-amplification. Zinc,
however, suppressed Nfatc1 mRNA expression as much as
FK506, a known inhibitor of calcineurin-NFATc1 signaling
during osteoclastogenesis (Figure 3B).
To analyze how zinc suppresses Nfatc1 mRNA ex-

pression, we evaluated whether zinc inhibits osteoclast
differentiation signaling pathways. Calcineurin dephos-
phorylates cytosolic p-Nfatc1 after which the dephos-
phorylated Nfatc1 translocates to the nucleus. We thus
evaluated the protein levels of cytosolic p-Nfatc1 and
nuclear Nfatc1 in RAW264.7 cells. Zinc dose-dependently
increased cytosolic p-Nfatc1. In contrast, nuclear Nfatc1
dose-dependently decreased in response to zinc (Figure 4A).
As shown in Figure 4C, the expression and transcriptional
activity of Nfatc1 were induced in RAW264.7 cells after
exposure for 30 minutes to RANKL. Zinc significantly
reduced the protein level of activated Nfatc1 as much as
FK506. These results correlated with the transcriptional
and DNA binding activities of Nfatc1 (Figure 4D, 4E, left
panel). NF-κB transcriptional and DNA binding activities
were also induced by RANKL but were not inhibited by
zinc or FK506 (Figure 4D, 4E, right lower panel).

Zinc inhibits calcineurin activity but not expression
We investigated calcineurin activity and its protein
expression in the upstream Nfatc1 signaling pathway
during osteoclast differentiation. After exposure to
RANKL for 30 minutes in the presence or absence of



Figure 3 Zinc regulates the mRNA levels of Nfatc1 and its target genes during BMM osteoclastogenesis. (A) BMMs were cultured in the
present of M-CSF (30 ng/ml) and RANKL (120 ng/ml) for 4 days with or without ZnSO4 (100 μM). In RANKL-induced osteoclasts, mRNA expression
of osteoclast marker genes (left panel) and fusion-related genes (right panel) were determined using real-time PCR. The results are expressed
relative to each mRNA on day 4. (B) BMMs were cultured with M-CSF (30 ng/ml) and RANKL (120 ng/ml) in the presence or absence of ZnSO4

(100 μM) and FK506 (1 μM). After 24, 48, or 72 hours, total RNA was extracted from the cultured BMMs and mRNA levels were examined using
real-time PCR. Data are presented as the mean ± S.D. of three independent experiments; * p < 0.05 compared to control and RANKL, respectively.
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zinc or FK506 in RAW264.7 cells, PP2B-Aα, the
catalytic subunit of calcineurin, was unchanged in terms
of protein expression (Figure 4B). However, zinc and
FK506 similarly inhibited RANKL-induced calcineurin
activity (Figure 4F).

Zinc suppresses RANKL-induced Ca2+ oscillations in
RAW264.7 cells without decreasing PLCγ phosphorylation
Ca2+ oscillations in RAW264.7 cells begin at least 18
hours after RANKL stimulation during osteoclastoge-
nesis and are sustained [9,26]. Zinc completely inhibited
RANKL-induced Ca2+ oscillations (Figure 5A, lower
panel). As a positive control, the store-operated Ca2+

channel blocker Gd3+ also curtailed RANKL-induced
Ca2+ oscillations (Figure 5A, mid right panel). Because
PLCγ activation precedes RANKL-induced Ca2+ oscilla-
tions, we examined the expression of the active form of
PLCγ, phospho-PLCγ. Surprisingly, zinc treatment did
not affect phosphorylation status of PLCγ1 in RANKL-
stimulated RAW264.7 cells (Figure 5B). Based on these
results, we suggest that zinc inhibits RANKL-induced
Ca2+ oscillations independently of PLCγ1 and is involved
in the Ca2+-calcineurin-NFATc1 signaling pathway in
osteoclastogenesis.
Nfatc1 rescues the inhibitory effects of zinc during
osteoclastogenesis in RAW264.7 cell
We examined whether Nfatc1 could rescue defects of
osteoclastogenesis using zinc. Indeed, when we ectopically
expressed a constitutively active form of Nfatc1 (caNfatc1)
in RAW264.7 cells, caNfatc1 completely rescued suppres-
sion of osteoclastogenesis by zinc (Figure 6A). TRAP
activity was significantly increased compared with the
mock (Figure 6B). These results indicate that impairment
of Nfatc1 activation is the cause of suppression during
osteoclastogenesis.

Discussion
Here we show that zinc inhibits RANKL-induced Nfatc1
translocation to the nucleus by decreasing calcineurin
phosphatase activity during the early period of osteo-
clastogenesis. This ultimately inhibits osteoclast diffe-
rentiation. Interestingly, zinc immediately diminished
RANKL-induced Ca2+ oscillations throughout the mid-
dle or late period of osteoclastogenesis (Figure 5A) but
did not suppress RANKL-induced PLCγ1 phosphoryl-
ation (Figure 5B), indicating that the inhibition of Ca2+

oscillations may be independent of PLCγ1. We thought
that zinc could be affecting the downstream signaling



Figure 4 Zinc Inhibits RANKL-induced Nfatc1 Activation by suppressing NFATc1 Translocation to the Nucleus in RAW264.7 cells.
(A, B) RAW264.7 cells were incubated with RANKL (35 ng/ml) alone or RANKL (35 ng/ml) with various concentrations of ZnSO4. After 30 minutes,
cytosolic and nuclear fractions were extracted from each group and evaluated by western blotting with the anti-phospho-Nfatc1 antibody
(A, upper panel and C, left panel), anti-Nfatc1 antibody (A, lower panel, C, right panel), or anti-PP2B-Aα antibody (B), which is the catalytic subunit
of calcineurin. Subcellular fraction purity and equal sample loading were evaluated by analyzing Lamin B and α-tubulin. Protein levels were
quantified using densitometry. (C) RAW264.7 cells were incubated for 30 minutes with RANKL (35 ng/ml), RANKL (35 ng/ml) with ZnSO4 (100 μM),
or RANKL (35 ng/ml) with FK506 (1 μM). Cytosolic phospho-Nfatc1 and nuclear Nfatc1 were analyzed using western blot. (D, E) RAW264.7 cells
were stimulated with RANKL (R) or RANKL (R) plus ZnSO4 (30 or 100 μM) for 30 minutes. Nuclear fractions were prepared, and the transcriptional
and DNA binding activity of Nfatc1 and NF-κB were measured using luciferase reporter assay and ELISA, respectively. RLU, Relative Light Units (F)
RAW264.7 cells were cultured as shown in panel C. Cytosolic PP2B-Aα was examined by western blot and calcineurin activity was compared with
the treated groups. Data are presented as the mean ± S.D. of three independent experiments; * p < 0.05 compared to RANKL (R).
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pathway of the ITAM-containing adaptor-Syk-PLCγ1
axis.
After interacting with RANKL and RANK, Ca2+ oscil-

lations are triggered by co-stimulatory receptors, includ-
ing osteoclast-associated receptor (OSCAR), paired
immunoglobulin-like receptor (PIR)-A, triggering recep-
tor expressed on myeloid cell 2 (TREM2), and signal-
regulatory protein (SIRP) β1 [22]. OSCAR and PIR-A
recruit FcRγ adaptor proteins, whereas TREM2 and
SIRPβ1 pair with DAP12 adaptor proteins, resulting in
spleen tyrosine kinase (Syk) activation, followed by
PLCγ1 phosphorylation and subsequently, Ca2+ influx
and oscillations [27]. To maintain the Ca2+ oscillations,
store-operated Ca2+ entry (SOCE) is necessary to refill
the intracellular Ca2+ stores [28]. It was reported that 2-
aminoethoxydiphenyl borate (2-APB) and SKF-96365,
SOC channel blockers, significantly decrease osteoclastic
survival and bone resorption [29]. Additionally, Gd3+, a
SOC channel blocker, rapidly inhibits Ca2+ oscillations
[30]. However, there is controversy regarding whether
zinc blocks the SOC channel. Tibbits et al. reported that
zinc blocked SOC channels in human salivary cell lines,
human neutrophils, and rabbit cardiomyocytes [31-34].
Ambudkar et al. subsequently reported that SOC chan-
nels were not inhibited by zinc in human salivary cell
lines [35-37]. In osteoclasts, zinc may act as a SOC
channel blocker similar to Gd3+. To verify that zinc is a
SOC channel blocker in osteoclasts, further studies will
be needed.
Zinc is known to stimulate osteoclast apoptosis, which

is mediated through Ca2+ signaling [38]. We first defined
a concentration of ZnSO4 (100 μM) that was nontoxic



Figure 5 Zinc Suppresses RANKL-induced Ca2+ Oscillation in
RAW264.7 cells without decreasing PLCγ1 activity. (A) RAW264.7
cells were cultured for 48 hours with RANKL (35 ng/ml) (n=3).
Intracellular Ca2+ in single cells was measured using Fura-2/AM
(5 μM). After observing RANKL-induced spontaneous Ca2+

oscillations for 10 minutes, ZnSO4 (10 or 30 μM) was added to the
bath solution. At the end of the experiment, ionomycin (5 μM) was
added. We used Gd3+, a known calcium channel blocker, as a
positive control. Data shown represent one experiment of three
performed with similar results. (B) RAW264.7 cells were stimulated
for 30 minutes with RANKL (35 ng/ml) or RANKL (35 ng/ml) plus
ZnSO4 (100 μM). Prepared proteins were analyzed by western
blotting with anti-phospho-PLCγ1 or anti-PLCγ1 antibodies. Protein
levels were quantified using densitometry.
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to both BMMs and RAW264.7 cells. Although 100 μM
ZnSO4 significantly inhibits TRAP activity in osteoclasts
(Figure 2C), this concentration of zinc does not affect
BMM viability (Figure 1A). As shown in Figure 2B, the
number of fused multinucleated osteoclasts significantly
decreased upon zinc treatment, indicating that zinc af-
fects the fusion of multinucleated cells in BMMs. These
findings suggest that the inhibitory effect of zinc on
osteoclast differentiation was not caused by zinc cyto-
toxicity. In Figure 3B, mRNA levels of Nfatc1 decreased
due to zinc and FK506 treatments as osteoclast differen-
tiation progressed. Yet there were still some Nfatc1
inductions at 48 and 72 hours after the zinc and FK506
treatments. Asagiri et al. reported that an autoam-
plification of Nfatc1 was essential in osteoclast differenti-
ation [39]. As shown in Figure 4D, the inhibitory effects of
zinc and FK506 for Nfatc1 transcriptional activity were
not 100%. There was some residual activity. We thought
that while some autoamplification of Nfatc1 caused part
of the Nfatc1 inductions after zinc and FK506 treatments,
it might be not enough for osteoclast maturation.
There were many reports that zinc can inhibit cal-

modulin, which is an important activator of calcineurin.
Brewer reported that zinc inhibits calmodulin in the
erythrocyte [40]. Zinc inhibits calmodulin by competing
with Ca2+ binding to calmodulin, which has also resulted
in a conformational change of the protein [40-43]. The
phosphorylation and activity of calmodulin-dependent
protein kinase II is modulated by zinc as well [44]. One
in vivo study showed that calmodulin level decreased in
epidermal cells after intraperitoneal or intradermal zinc
injections [45]. Another study showed that zinc treat-
ment reduced calmodulin in adipocytes of obese mice
[46]. We found that zinc decreased the activity of
calcineurin in the early period of osteoclastogenesis of
RAW264.7 cells (Figure 4F). Our results were consistent
with a previous article that showed Nfatc1 translocation
to the nucleus and an activation of calcineurin within 30
to 40 minutes after RANKL stimulation in RAW264.7
cells [47]. In addition, calcium which comes from in-
tracellular calcium storage, such as the sarcoplasmic
reticulum, may be working as a second messenger in the
early period of osteoclast differentiation. Thus, we
thought that zinc might inhibit calcineurin activity by
suppression of calmodulin as shown in previous reports
[40-46]. Subsequently, Nfatc1 would not be able to
change into its active form and stays in the cytosol.
When we overexpressed constitutively active NFATc1 in
RAW 264.7 cells, the inhibitory phenotype for osteo-
clasts rescued (Figure 6). Since the constitutively active
NFATc1 lacks phosphorylation sites in the regulatory
domain, it would be expected to effects of zinc on
NFATc1 kinases such as calcineurin which is the most
important NFATc1 kinase. So, we thought that the res-
cue of the phenotype was caused by calcineurin-NFATc1
pathway. But, we cannot exclude effects of zinc on other
modulators of NFATc1 pathway.
It was previously reported that zinc treatment for 24

hours suppresses RANKL-induced NK-κB luciferase
activity in RAW264.7 cells [48]. It was also reported that
zinc supplementation for 3 months decreases the DNA
binding capacity of NF-κB in mononuclear cells from
sickle cell disease patients [49]. These results differed
from our own results that zinc did not inhibit NK-κB
transcriptional activity in RAW264.7 cells (Figure 4D).
This difference may be controversial. In general, how-
ever, an efficiency of DNA transfection in RAW264.7
cells is very poor. Thus, we used electroporation for
more efficient gene expression instead of chemical trans-
fections and increased the efficiency up to 65%. We



Figure 6 Nfatc1 rescues the inhibitory effects of zinc during osteoclastogenesis in RAW264.7 cells. (A, B) After electroporation with the
mock (A, left panel) and constitutively active form of Nfatc1 (B, right panel), RAW264.7 cells were cultured for 4 days with RANKL (35 ng/ml) in
the absence or presence of ZnSO4 (100 μM) (n=3). Osteoclast formation was visualized using TRAP staining in panel A. TRAP activity is shown in
panel B. Data are presented as the mean ± S.D. of three independent experiments; * p < 0.05 compared to RANKL (R).
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thought that this may be a cause of the difference. Also,
Hie et al. demonstrated that Zn treatment could inhibit
RANK expression during osteoclast differentiation [50],
but its molecular mechanism was unclear. Further inves-
tigation is needed in future studies.
Intracellular zinc signaling consists of two signaling

pathways. The early zinc signal, which is transcription-
independent, is rapidly induced by an extracellular
stimulus, such as FcεRI [16]. Late zinc signaling involves
transcription-dependent changes in expression of zinc
transporters, such as ZIP (SLC30A) and ZnT (SLC39A)
[16,51-53]. Zinc transporters are ubiquitously expressed
and play a role in maintaining the levels of cellular zinc
by controlling its influx, efflux, and sequestration. Zinc
signaling also modulates numerous cellular processes
involved in cell differentiation, proliferation, and growth
[54]. Because zinc transporters are expressed in osteo-
clasts and some are up-regulated during osteoclast dif-
ferentiation, zinc may play an important role in osteoclast
differentiation [55,56].
FK506, an immunosuppressant, is a potent inhibitor of

calcineurin phosphatase activity. It inhibits both bone
resorption and formation [57]. Overall, FK506 is not
beneficial for increasing bone mass and quality. Zinc, on
the other hand, inhibits osteoclastogenesis as well as
stimulates bone formation in mice and rats [38,48]. In
particular, we also found that zinc stimulates osteoblas-
togenesis in human mesenchymal stem cells (data not
shown). Thus, if zinc could be effectively transferred in
bone tissue, it may be beneficial for increasing bone
mass and quality.
Conclusions
We have shown that zinc is an important inhibitory
modulator during osteoclast differentiation that acts
on the Ca2+-Calcineurin-NFATc1 signaling pathway.
We proposed molecular mechanisms through which
zinc may inhibit calcineurin in at least the early
period of osteoclast differentiation and inhibit calcium
oscillations in the middle or late period of osteoclast
differentiation (Figure 7). Therefore, zinc might be a
good therapeutic candidate for preventing osteopor-
osis and arthritis caused by NFATc1 activation in
osteoclasts.

Materials and methods
Cell culture and reagents
Primary cultured mouse BMMs (bone marrow-derived
monocytes) and RAW264.7 cells (Korean Cell Line Bank,
South Korea) were respectively cultured in α-minimum
essential media (α-MEM, Gibco) and Dulbecco’s modified
Eagle’s media (DMEM, Thermo) supplemented with 10%
fetal bovine serum (FBS, Gibco) in 5% CO2 at 37°C.
M-CSF and RANKL were purchased from KOMA Biotech
(South Korea) and ATGen (South Korea), respectively.
The monoclonal antibody for α-tubulin and polyclonal
antibodies for p-Nfatc1 (Ser259), Nfatc1, PP2B-Aα and
Lamin B were obtained from Santa Cruz Biotechnology
(Santa Cruz, CA). Polyclonal antibodies for p-PLCγ1
(Tyr783) and PLCγ1 were procured from Cell Signaling
Technology (Beverly, MA). Fura-2/AM was purchased
from Teflabs (Austin, TX). Zinc sulfate (Zn2+), gadolinium
chloride (Gd3+) and FK506 were obtained from Sigma-



Figure 7 The proposed molecular mechanism for the inhibitory effects of zinc on RANKL-induced osteoclastogenesis. Schematic models
of the inhibitory effects of zinc on the Ca2+-Calcineurin-NFATc1 signaling pathway; (A) Zinc may inhibit calcineurin in the cytosol in the early
period of osteoclastogenesis. (B) In the middle or late period, zinc could be suppressing calcium oscillations by blocking calcium influx from
extracellular space. Cn A, Calcineurin A subunit; CaM, Calmodulin; P, phosphorylated.

Park et al. Cell Communication and Signaling 2013, 11:74 Page 8 of 12
http://www.biosignaling.com/content/11/1/74
Aldrich (St Louis, MO). Constitutively active Nfatc1 plas-
mid vector was generously gifted by Dr. Anjana Rao [58].

Preparation of BMMs and in vitro osteoclastogenesis
The femur and tibia were removed from 6-week-old
male C57BL/6 mice. Cells derived from the bone
marrow were collected and cultured in growth media
containing M-CSF (10 ng/ml). After 24 hours, nonadhe-
rent cells were collected and seeded in a 100 mm dish
and treated with M-CSF (30 ng/ml). After 48 hours,
nonadherent cells were washed and the adherent cells
were used as BMMs. BMMs were detached from the 100
mm dish using DetachinTM (Genlantis, San Diego, CA).
The obtained cell pellet was resuspended and seeded on
dishes or plates for osteoclastogenesis. BMMs (1 × 105

cells/ml) were cultured for 4 days in growth media
containing M-CSF (30 ng/ml) and RANKL (120 ng/ml)
with or without ZnSO4. Also, RAW264.7 cells were
cultured for 4 days in growth media containing RANKL
(35 ng/ml) with or without ZnSO4 for osteoclastoge-
nesis. For rescue experiments, RAW264.7 cells were
transfected with constitutively active Nfatc1 plasmid by
electroporation using the Amaxa Cell line Nucleofector™
kit V (Lonza).

Cell viability assay
RAW264.7 cells were maintained in growth media with
or without ZnSO4 (10, 30, 60, 100, 200, or 500 μM) for
24 hours. Additionally, BMMs were cultured in growth
media containing M-CSF (30 ng/ml) in the presence or
absence of ZnSO4 (10, 30, 60, 100, 200, or 500 μM) for 4
days. Cell viability assays were performed using an
EZcytox cell viability assay kit (Daeillab Service, South
Korea) according to the manufacturer’s instructions.
Briefly, the cells were plated in 96-well plates at 1 × 104

cells per well and cultured in growth media. At the



Table 1 List of primer sequences

Transcript Primer sequence (5′ → 3′)

Nfatc1 F: GGTAACTCTGTCTTTCTAACCTTAAGCTC

R: GTGATGACCCCAGCATGCACCAGTCACAG

Traf6 F: GAAGAGGTCATGGACGCCAA

R: CGGGTAGAGACTTCACAGCG

Fos F: GGAGAATCCGAAGGGAACGG

R: GCAATCTCAGTCTGCAACGC

Sfpi1 F: CAGCAGCTCTATCGCCACAT

R: ATCCGGGGCATGTAGGAAAC

Pparg F: ATTGAGTGCCGAGTCTGTGG

R: GGCATTGTGAGACATCCCCA

Acp5 F: GGGAAATGGCCAATGCCAAAGAGA

R: TCGCACAGAGGGATCCATGAAGTT

Ctsk F: AGGCAGCTAAATGCAGAGGGTACA

R: ATGCCGCAGGCGTTGTTCTTATTC

Mmp9 F: CGCTCATGTACCCGCTGTAT

R: TGTCTGCCGGACTCAAAGAC

Calcr F: TGCGGCGGGATCCTATAAGT

R: TGGTTGGCACTATCGGGAAC

Itgb3 F: TTACCACGGATGCCAAGACC

R: CCCCAGAGATGGGTAGTCCA

Atp6v0d2 F: GGCTGTGCTGGTTGAAACAC

R: TAACAACCGCAACCCCTCTG

Dcstamp F: TCCTCCATGAACAAACAGTTCCAA

R: AGACGTGGTTTAGGAATGCAGCTC

Ocstamp F: ATGAGGACCATCAGGGCAGCCACG

R: GGAGAAGCTGGGTCAGTAGTTCGT

Cd47 F: GTGGTTGTTGGAGCCATCCT

R: TGCCATGATGCAGAGACACA

Cd44 F: CAACCGTGATGGTACTCGCT

R: TTGAGTGCACAGTTGAGGCA

Adam12 F: CATCCAGACGTGCTGACTGT

R: AGCTGGGACGAGTTTGTAGC

Mfr F: TGGCTTCTCTCCCCGGAATA

R: CCTCGGGGTAGAACCTCTCA
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indicated time points, cells were incubated for 4 h at 37°C
with WST-1. The number of viable cells in triplicate wells
was measured at an absorbance wavelength of 450 nm.

Measurement of TRAP activity and TRAP staining
TRAP activity was measured from osteoclast culture
supernatants using a TRAP Staining kit (Kamiya Bio-
medical Company). Supernatants (30 μl) were incubated
for 3 hours at 37°C with 170 μl of the chromogenic sub-
strates in a tartrate-containing buffer. TRAP activities
were measured in terms of the absorbance at a wave-
length of 540 nm. TRAP was stained using a similar
method as described above. Cultured cells were incubated
with a fixative for 5 minutes at room temperature, washed
with distilled water, and treated for 20 minutes at 37°C with
the chromogenic substrate in tartrate-containing buffer.
After staining, TRAP-positive multinucleated (nuclei ≥ 3)
cells were counted using manual counting or a nuclei coun-
ter plug-in in the Image J program.

Real-time reverse transcription-PCR
RNA was extracted from BMMs on the indicated days
using TRIZOL reagent (Invitrogen, Carlsbad, CA).
cDNA was reverse transcribed using random hexamers
and SuperScript-III reverse transcriptase (Invitrogen).
The cDNA was used in real-time PCR with a KAPA
SYBR FAST ABI Prism qPCR kit (Kapa Biosystems). The
specific primer pairs are shown in Table 1. Nfatc1 and
other mRNAs were measured using a StepOne (Applied
Biosystems) Real-Time PCR System. The PCR program
was initiated for 20 seconds at 95°C, followed by 40 ther-
mal cycles of 3 seconds at 95°C and 30 seconds at 60°C,
and terminated for 15 seconds at 95°C, 1 minute at 60°C,
and 15 seconds at 95°C. Data were analyzed according to
the comparative cycle threshold (Ct) method [59] and
were normalized to GAPDH in each sample. We exam-
ined individual gene expression in triplicate and repeated
each experiment more than three times.

Cell fractionation
RAW264.7 cells at 70–80% confluence were incubated in
α-MEM containing RANKL (35 ng/ml), with or without
ZnSO4, for the indicated times, washed, and scraped in
cold PBS. Cell pellets were fractionated into cytoplasmic
and nuclear fractions using a NE-PER Nuclear and Cyto-
plasmic Extraction Reagents kit (Pierce, Rockford, IL).

Western blots
Cell lysates were prepared using radioimmunopreci-
pitation assay (RIPA) buffer [50 mM Tris-Cl (pH 7.4),
150 mM NaCl, 1% NP-40, 0.25% Na-deoxycholate, 0.1%
SDS with 1 mM EDTA (pH 8.0), 1 mM phenylmethyl-
sulfonyl fluoride, 2 μg/ml aprotinin, 2 μg/ml leupeptin, 4
mM Na3VO4, and 10 mM NaF]. The samples (10–30 μg
protein/well) were resolved using SDS–PAGE (6-10%
gels), and proteins were transferred to nitrocellulose
membranes. The membrane was blocked in 5% skim
milk and incubated with antibodies against p-Nfatc1
(1:3000), Nfatc1 (1:4000), PP2B-Aα (1:500), p-PLCγ1
(1:1000), PLCγ1 (1:1000), α-tubulin (1:500), and lamin B
(1:1000). This procedure was followed by incubation
with a horseradish peroxidase-conjugated secondary
antibody for 1 hour. Chemiluminescence was detected
using an ECL system (GE Healthcare).
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Nfatc1 and NF-κB transcriptional activity
Nfatc1 and NF-κB transcriptional activities were mea-
sured using luciferase reporter assay. Luciferase reporter
gene plasmids were transfected in RAW264.7 cells using
the Amaxa Cell line Nucleofector™ kit V (Lonza). pRL-
TK (Promega) was used as a normalization control to
check transfection efficiency. The next day, cells were
stimulated in RANKL with or without zinc sulfate or
FK506. The cells were collected 24 hours after treatment
and lysed with 1 × Passive lysis buffer (Promega). Lucifer-
ase activity was measured using the Dual-Luciferase
Reporter Assay System (Promega).

Nfatc1 and NF-κB DNA binding activity
Nfatc1 and NF-κB (p65) DNA binding activities were
measured using a TransAM transcription factor enzyme-
linked immunosorbent assay (ELISA) kit (Active Motif,
Carlsbad, CA). Nuclear extracts (5 μg) were incubated for
30 minutes at room temperature on Nfatc1 and NF-κB
consensus oligonucleotide-coated ELISA plates. Activated
transcription factors bound to consensus oligonucleotides
were detected using a specific antibody and measured at
450 nm.

Calcineurin activity
Cellular calcineurin phosphatase activity was measured
in cell extracts using a Calcineurin Cellular Activity
assay kit (Enzo Life Sciences, Farmingdale, NY). In brief,
cells were lysed in a lysis buffer containing protease
inhibitors and centrifuged. The same amount of protein
(5 μg) was used in the calcineurin activity assays. Colori-
metric measurements were performed at 620 nm. The
amount of phosphate released by calcineurin was calcu-
lated using a standard curve.

Intracellular Ca2+ measurement
RAW264.7 cells were seeded on a cover glass in a 35
mm dish (1 × 105 cells per dish) and activated for 48
hours with RANKL (35 ng/ml). Cells were incubated for
30 minutes at room temperature with 5 μM Fura-2/AM
and 0.05% Pluronic F-127 (Invitrogen) and washed with
a bath solution (140 mM NaCl, 5 mM KCl, 1 mM
MgCl2, 10 mM HEPES, 1 mM CaCl2, 10 mM glucose,
310 mOsm, pH 7.4). The cover glass was transferred to
a perfusion chamber, and the cells were continuously
perfused with prewarmed (37°C) bath solution. The excita-
tion wavelengths for Fura-2 fluorescence were 340 and
380 nm and the emission wavelength was 510 nm. The
fluorescence intensity was measured by the ratio of emitted
fluorescence (F340/F380), which was monitored using a
CCD camera (Universal Imaging Co., Downingtown, PA)
every 2 seconds. CCD camera images were analyzed using
MetaFluor software (Universal Imaging, Downingtown,
PA). For the inhibition assays, ZnSO4 or a known store-
operated Ca2+ (SOC) channel inhibitor, Gd3+ was added
10 minutes after RANKL-induced Ca2+ oscillations. At the
end of the assay, 5 μM ionomycin (Sigma) was added.

Statistical analysis
The results are shown as the mean ± standard deviation
(S.D.) from at least three independent experiments. The
differences between groups were analyzed using Student’s
t-tests and p < 0.05 was considered statistically significant.

Additional file

Additional file 1: Table S1. List of Zinc-related genes that were up-
regulated (log2 ratio > 4.0) during osteoclastogenesis.
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