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Abstract

A fundamental property of hematopoietic stem cells (HSCs) is the ability to self-renew. This is a complex process
involving multiple signal transduction cascades which control the fine balance between self-renewal and
differentiation through transcriptional networks. Key activators/regulators of self-renewal include chemokines,
cytokines and morphogens which are expressed in the bone marrow niche, either in a paracrine or autocrine
fashion, and modulate stem cell behaviour. Increasing evidence suggests that the downstream signaling pathways
induced by these ligands converge at multiple levels providing a degree of redundancy in steady state
hematopoiesis. Here we will focus on how these pathways cross-talk to regulate HSC self-renewal highlighting
potential therapeutic windows which could be targeted to prevent leukemic stem cell self-renewal in myeloid

malignancies.
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Lay abstract

Leukemia is often a stem cell disease. Here we describe
mechanisms that keep diseased cells in a stem like state
and how they are being exploited to treat certain
leukemias.

Steady-state hematopoiesis

In adults hematopoiesis occurs within the architecture
of the bone marrow (BM), a specialized microenviron-
ment referred to as the stem cell niche where the
hematopoietic stem cells (HSCs) reside and are regulated
for quiescence, self-renewal and differentiation through
intrinsic and extrinsic mechanisms. The BM contains at
least two distinctive HSC supportive niches: an endosteal
osteoblastic niche, which supports quiescence and self-
renewal and a more vascular/peri-sinusoidal niche that
promotes proliferation and differentiation [1]. Within the
more hypoxic osteoblastic niche, HSCs specifically inter-
act via N-cadherin and Jagged 1 with the osteoblasts that
line the endosteal surface. The osteoblasts secrete several
factors including; stem cell factor (SCF), thrombopoietin
(TPO), angiopoietin-1, osteopontin, Wnt, and CXC motif
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ligand 12 (CXCL12; also termed stromal-derived factor-1
[SDF-1]) which are important regulators of quiescence
and HSC maintenance [2]. In vivo imaging indicates that
the HSCs and progenitors located further away from this
area, in the vicinity of sinusoidal endothelial cells near the
vascular endosteum, are more proliferative [3]. In these
BM areas, HSCs interact with endothelial cells via specific
cell adhesion molecules; E-selectin, P-selectin, VCAM1
and ICAM1. Endothelial cells secrete several factors im-
portant for HSC homeostasis including CXCL12, vascular
endothelial growth factor (VEGEF), transforming growth
factor B (TGEp), fibroblast growth factor 4 (FGF4),
adrenomedullin, insulin-like growth factor binding protein
2 (IGFB2), angiopoietin-like protein 5 (Angptl-5) and
pleiotrophin. E-selectin and CXCL12 are important for
BM homing of circulating HSCs, whereas VEGF plays a
role in controlling HSC self-renewal and repopulating
ability, and TGF-f is known to inhibit HSC proliferation,
promoting HSC quiescence. Recent evidence indicates
that IGFB2 and Angptl-5 are involved in HSC expansion
with pleiotrophin, CXCL12 and FGF4 all mediating HSC
progenitor interactions with the vascular niche and facili-
tating differentiation [2].

Myeloid leukemia occurs due to genetic changes in an
HSC, or in some cases, a committed progenitor, that
then acquires self-renewing properties, and thus the
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ability to successively transfer leukemia by adoptive
horizontal transfer to recipients [4,5]. This gives rise to a
hierarchical clonal stem cell disease often with more
than one expanding leukemic stem cell (LSC) population
sustaining the malignancy, with the BM being the
primary site of disease development. In acute myeloid
leukemia (AML) CD34+ LSCs have been shown to be
more akin to normal progenitors than CD34+ HSC with
two populations identified as having engraftment
potential in >80% of patients analysed. These consisted
of a CD34'CD38 CD45RA" lymphoid-primed multi-
potent progenitor (LMPP) population and a CD34"
CD38"CD45RA" granulocyte-macrophage progenitors
(GMP) population [4]. Similar results were previously
demonstrated when MLL-ENL was expressed in HSC
with the efficiency of transplantation being HSC> com-
mon myeloid progenitor (CMP) >GMP, indicating that
the more primitive populations required fewer cells for
transformation with more committed progenitors still
retaining this capacity [5]. Gene profiling also revealed
that although the more mature LSC maintained normal
GMP progenitor identity they had re-activated self-
renewal programmes [4,5]. LSCs therefore retain all the
fundamental properties of HSCs and progenitors in-
cluding; quiescence, self-renewal and differentiation
potential. In addition LSCs behave like normal HSCs
and progenitors associating with BM stromal cells and
extracellular matrix proteins via cell adhesion molecules
[6], and rely on CXCL12-mediated CXCR4 signaling for
homing and mobilization within the BM [6,7]. Thus,
many of the molecules that mediate the interaction
between stem cells and the BM niche are utilised by
both HSCs and LSCs, suggesting LSC behaviour is likely
to be modulated by interactions and signals received
within the BM microenvironment. Indeed, many mo-
lecular lesions in LSCs affect pathways that are activated
in the niche environment. These include ligand inde-
pendent activating mutations of Flt3, cKit, MPL [8], and
chromosomal translocations giving rise to constitutively
active fusion proteins such as AMLI/ETO in AML,
PML/RARa in acute promyelocytic leukemia (APL),
BCR/ABL in chronic myeloid leukemia (CML) [9], and
the FGFR1 and PDGEFR fusion partners which include
ZNF198-FGFR1, FIPILI-PDGFRa and ETV6-PDGFRf
involved in chronic eosinophilic leukemia (CEL), juve-
nille myelomonocytic leukemia (JMML) and chronic
myelomonocytic leukemia (CMML) [10,11]. A common
theme is the acquisition of self-renewal promoting activ-
ity through the ability of these receptors and fusion pro-
teins to activate signal transduction especially the PI3
Kinase (discussed below) and JAK/STAT pathways. The
molecular mechanisms still need further elaboration, but
possible target genes include HIF2a and HoxA9, and the
down regulation of C/EBPa [12,13]. Emerging evidence
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indicates that not only do the LSCs strongly rely on the
BM niche for their self-renewal and proliferation, but
they may also modify it to their advantage. Indeed,
abnormalities have been observed within the leukemic
BM including elevated SCE, CXCL12 and VEGF levels as
well as increased acidity and hypoxia [14]. Recent studies
indicate that alterations within the BM microenviron-
ment might also be an initiating trigger to induce
leukemogenic transformation of normal cells. This is
often the case for patients with BM failure syndromes
such as acquired and inherited aplastic anemia. These
patients are at risk of developing clonal neoplasms
including AML, myelodysplastic syndromes (MDS) and
paroxysmal nocturnal hemaglobinuria (PHN). Over-
production of apoptotic inducing cytokines by T cells
triggers BM failure and has been shown to lead to trans-
formation through clonal selection and adaption of
resistant HSC which are able to survive in this modified
BM microenvironment [15]. In mouse models targeted
disruption of retinoblastoma protein or retinoic acid
receptor in the BM microenvironment results in the de-
velopment of myeloproliferative disorders [16]. Whereas
conditional knockout of dicerl in osteoblastic precur-
sors, results in myelodysplasia and the development of
AML [17]. These findings highlight that the BM niche
plays a key role in regulating stem cell function and
hematopoiesis.

Discovery and persistence of LSC

Several myeloid malignancies including AML, CML,
CMML and APL are stem/progenitor cell diseases. Data
indicates that although LSCs are relatively rare, they
maintain the disease and are responsible for relapse
following chemotherapeutic elimination of the leukemic
cell bulk. Their continued presence is in part due to
their ability to self-renew and evade differentiation [18].
In myeloid leukemias, the presence of LSCs was initially
proposed following limiting dilution studies of patient
peripheral blood, and assessing colony forming ability.
The first in vivo demonstration was in AML, where only
one cell in 250 000 could initiate disease in an immuno-
compromised SCID mouse transplantation model [19].
Through a variety of experiments involving SCID mouse
transplantation, using patient cells FACS sorted based
on surface marker expression, the stem cell population
was found to comprise of a primitive population with a
CD34"CD38" phenotype. More recent findings, using
improved murine engraftment models have revealed
heterogeneity in AML LSC phenotypes, which include
cells that are CD34"CD38"* or even CD34  [19]. Given
the importance of LSC for the maintenance of myeloid
malignancies, their frequent resistance to chemotherapy,
and their heterogeneous nature, understanding the
deregulation of self-renewal pathways utilised by LSCs is
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necessary to design essential therapeutics to eliminate
myeloid malignancies. Intervention may involve targe-
ting the LSC self-renewal pathways or promoting their
differentiation.

Self-renewal pathways

Although cytokines are known to regulate HSC func-
tions in vivo, their ability to expand and maintain HSCs
has been limited in vitro, with HSCs eventually differen-
tiating and subsequently losing their reconstitution
capacity. This is due to other factors augmenting HSC
self-renewal within the BM niche, as summarized in
Figure 1. Cytokines signal through several well-defined
pathways including the Jak/STAT, Raf/MEK/ERK, NFkB
and the PI3 Kinase/PTEN/Akt/mTOR signal transduc-
tion cascades. Cytokine independent activation of these
pathways is a common feature in leukemia and has been
shown to be an important mechanistic feature for
survival and proliferation of the malignant clone.

Phosphoinositide-3-kinase (PI3 Kinase) pathway

Evidence suggests that the PI3 Kinase pathway plays a
critical role in both HSC and LSC self-renewal. This
pathway leads to the activation of Akt via the Serine/
Threonine protein kinase phosphoinositide-dependent
kinase-1 (PDK1). Activated Akt phosphorylates nume-
rous substrates to initiate several well described PI3
Kinase responses including; cell-cycle, stress resistance,
survival, growth, metabolism, migration and long-term
regeneration potential of HSCs. An important Akt sub-
strate is glycogen synthase kinase 3B(GSK3[3) which is
inactivated by serine phosphorylation following PI3
Kinase signaling. Deregulation of this pathway can there-
fore potentiate Wnt and Hedgehog (Hh) signaling as
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GSK3p plays an important role in regulating (-catenin
and Glioma (GLI) transcription factor levels (described
below). Another Akt-dependant molecule is Protein
Kinase A (PKA), which positively regulates Hh signaling
through GLI inactivation [20]. Forkhead O (FoxO) tran-
scription factors are effectors of the PI3 Kinase/Akt
pathway and have been demonstrated to regulate HSC
numbers and repopulation capacity in transgenic mouse
models [21]. FoxOs may also play an important role in
enhancing self-renewal and differentiation blockade via
oxidative stress sensing. Reactive oxygen species (ROS)
enhance FoxOs ability to bind and sequester [-catenin,
preventing its degradation, thus enhancing canonical
Wnt signaling [22]. The key negative regulator of PI3
Kinase signaling, often deleted or inactivated in cancers
is the tumour suppressor phosphatase and tensin homo-
log (PTEN). Conditional knock-out studies using the
Cre-loxP system to delete Pten in adult HSCs resulted in
the mice developing transplantable AML and acute
lymphoblastic leukemia (ALL), highlighting an import-
ant role for this pathway in leukemogenesis [23]. These
mice however undergo HSC depletion. In situations
where Pten is impaired, the problem of HSC depletion
can be overcome with the use of the mTOR inhibitor
rapamycin, which has the added advantage of depleting
LSCs. This may be through reducing flux through the
mTORC1 pathway, where in murine models at least,
deletion of Raptor, a component of mTORCI, improves
survival in Pten-deleted mice [24].

Despite the fact that many small molecule inhibitors
of this pathway have been developed, there are cur-
rently few clinical trials in myeloid leukemias. However,
one compound, the PI3 Kinase § selective inhibitor
CAL-101 is currently being tested in a phase 1 clinical

Wat signalling

Cytokine signalling

. =
O T
K Wa m g2 e

Wit Target Ganes:

< Mye, cun, Cyclin D1, Axin, DKL,
D4, TGF-1, Ca/Hor family

9

Cytokine Signalling Target Genes:

€My, c-Fos, c-bua, Cyclins, CDKs, 953, BCL, ¢-FUIP,
AP, p21, VEGF, VEGFR, p27, BIM, Fasl, AT

W - r
VU ATAVATAVAVA NS AVAAVAVAVAVANS o o VAV

Figure 1 Cross-talk between self-renewal pathways involved in myeloid malignancies.

Fladaehes samalling IEN Notch signalling

TEF family signalling
(0]

r’ \
X ’Mﬁ’ W

Hh Target Genes:

GUL, PTCH, Cyclin D1 &€, Wots, My,
BIPs, Pep, MDRL, BCRP, BCLE

TGFp Family Target Genes:

Nt nl‘arg ot Genas:
Hotchi,

11, 2, un,
STATL &My, Integrin, TGFPR et




Sands et al. Cell Communication and Signaling 2013, 11:33
http://www.biosignaling.com/content/11/1/33

trial with an extension study for patients with AML
(Table 1) [25].

Wnt signaling

The Wnt glycoproteins are a family of growth factors,
important for developmental hematopoiesis and highly
expressed within the BM niche. Wnt proteins signal
through at least three intracellular-signaling pathways,
however signaling via the canonical pathway is the best
characterised in the hematopoietic system. To date,
several members of the Wnt family (including Wnt-1,
3a, 5a and 10b), along with downstream components of
the signaling pathway have been shown to stimulate
proliferation and self-renewal of HSCs and are involved
in their long term maintenance [37,38]. Aberrant activa-
tion of the Wnt/B-catenin pathway has been linked to
promoting myeloid leukemia, with increased levels of
active B-catenin and components of the Wnt pathway
linked to AML [39], and progressive CML [40], sug-
gesting that Wnt pathway activation is important for
modulating leukemic hematopoiesis. Canonical Wnt
signaling is initiated by the binding of a Wnt protein to
its receptor, frizzled (Fz) family, and a co-receptor of the
low-density-lipoprotein-receptor-related-protein ~ family
(LRP5 or LRP6) [41]. The central player in the canonical
pathway is B-catenin. In the absence of Wnt signaling,
[B-catenin is present in a cytoplasmic ‘destruction
complex’ and is continuously phosphorylated by casein
kinase 1 (CK1) and GSK3p. This creates a recognition
motif for an E3-ubiquitin-ligase complex that contains
B-transducin-repeat-containing protein (B-TRCP), which
tags the protein for proteasomal degradation. Wnt sig-
naling inactivates GSK3p through interaction with the
protein dishevelled (Dvl); Dvl is recruited to the cell
membrane, allowing dissociation of GSK3p from the
destruction complex and un-phosphorylated p-catenin
to accumulate and translocate to the nucleus. A recently
proposed modification to this pathway suggests that
Wnt ligands only stop the ubiquitylation of B-catenin in
preformed complexes, where phosphorylated substrate
still remains bound [41]. This allows non phosphorylated
substrate to accumulate, [-catenin then displaces co-
repressors belonging to the groucho-related gene family
(GRG) bound to TCF/LEF transcription factors, resul-
ting in the induction of target genes such as c-myc, c-jun
and cyclinD1 [42]. Additional receptors for Wnt ligands
include the single pass orphan receptor tyrosine kinases,
ROR 1 & 2 involved in Wntba signaling and the atypical
receptor tyrosine kinase, Ryk involved in Wnt3a signal-
ing. Emerging evidence indicates that non-canonical
Wnt signaling, especially via Wntb5a plays, an important
role in modulating hematopoiesis. This pathway is
involved in survival and the stabilization of intracellular
signaling through calcium-mediated mechanisms. Non-
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canonical Wnt proteins bind Fz receptors which interact
with the ROR family of heteromeric G proteins to
activate phospholipase C, which in turn, generates diac-
ylglycerol and inositol-phosphate 3 (IP3) and intracellu-
lar Ca®* levels increase. This results in protein kinase C
(PKC) and calmodulin-dependent kinase II (CamKII) ac-
tivation [43]. Interestingly, non-canonical signaling has
been shown to exert an antagonistic effect on canonical
signaling, with Wnt5a promoting GSK3p independent
degradation of [-catenin [44] and competing with
Wnt3a for binding to the receptor complex [45]. Wnt
signaling although recognised as a key pathway in mo-
dulating HSCs behaviour is largely dispensable for
steady-state haematopoiesis, whereas increasing evidence
supports a role for this pathway in myeloid malignancies,
especially LSC maintenance. The Wnt pathway has been
shown to be important for both CML and AML LSC self-
renewal. In models of HoxA9/Meisla or MLLAF9
induced AML, it has been shown that Wnt pathway com-
ponents, such as Fzd4, 6, cyclinD2 and Frzb are unre-
gulated in LSCs. It has also been demonstrated that
[-catenin promotes AML, and that it is essential for disease
initiation from LSCs and granulocyte-macrophage pro-
genitor (GMP) cells. Wnt signaling is not active in normal
GMPs, and this may partially account for their acquisition
of stem-like properties [46,47]. Similarly, in CML, it has
been demonstrated that GMPs with stem cell-like proper-
ties displayed higher levels of B-catenin and differential
regulation of 16 Wnt pathway associated genes [48]. Con-
sistent with a role in self-renewal, several positive regula-
tors of the pathway were shown to be up-regulated,
including CK1 and LRP6. Conversely, the negative regula-
tor GSK3[ was down-regulated. Further studies of murine
models of CML have shown that decreasing levels of the
Wnt pathway effector P-catenin in the hematopoietic
compartment reduces CML stem cell self-renewal. As a
consequence, these cells have an impaired ability to
induce disease in their adoptive hosts. It is worth noting,
that ALL progression was unaffected in this model [49]. In
other CML murine models, Wnt signaling through p-
catenin has been shown to play an important role in
disease establishment and maintenance [49] with LSCs
relying on B-catenin signaling for their survival following
tyrosine kinase inhibitor (TKI) treatment [50] which can
be prevented by combination targeting [26]. These studies
indicate that the Wnt/ B-catenin pathway contributes to
CML LSC survival especially following TKI treatment,
highlighting its importance as a therapeutic target. The
Wnt/GSK pathway, although potentially important in
cancers, is currently not the subject of clinical trials due to
a lack of clinical grade small molecule inhibitors [51].
However, given the emerging evidence for B-catenin in
LSC persistence, this pathway offers an attractive thera-
peutic window for targeted therapies.



Table 1 Summary of available inhibitors which target self-renewal pathways involved in myeloid malignancies

Pathway Name of drug Mode of action Producer Stage of clinical / non-clinical development Trial number
Wnt/GSK3B  Aspirin / NSAIDs Complex / chemoprevention Generic Over the counter medications; no
[26-32] ongoing clinical

Vitamin A Reduce TCF-B-catenin Generic trials in haematological malignancies

Non-clinical

Vitamin D complex formation Leo Non-clinical

(EB1089) Binding of B-catenin by Pharmaceuticals

WNT1 and WNT2 vitamin D receptor Non-clinical

McAbs Monoclonal antibodies Generic

XAV939 Non-clinical

ZTMO000990, Inhibits tankyrase 1&2 Novartis Non-clinical

Notch [32,33]

Hh [34]

PKF118-310, PKF118-744, PKF222-815,
CGP049090, PNU-74654 1CG-001
NSC668036 SB-216763

GSK-3IX,

alsterpaullone
MK-0752

GSI-l, GSI-IX, GSI-
X, GSI-XII, GSI-
XXI

NOTCH3 McAb
Cyclopamine
LDE225

LEQ506
GDC-0449

Inhibit TCF-B-catenin

complex

Inhibits B-catenin/CREB-binding protein

transcription
Inhibits dishevelled PDZ domain
Inhibits GSK-3

Inhibit GSK-3

y-secretase inhibitor
y-secretase inhibitors

Monoclonal antibody

SMO antagonist
SMO antagonist
SMO antagonist
SMO antagonist

Multiple Institute for Chemical
Genomics

NCI

Sigma
Chemicals
EMD
Biosciences
Merck
Calbiochem

Generic

Generic
Novartis
Novartis

Genentech

Non-clinical Non-clinical

Non-clinical

Non-clinical

Phase 1: T acute lymphobilastic leukemia NCT00100152
Non-clinical

Non-clinical

Non-clinical

Phase 1: CML - in combination with Nilotinib NCT1456676
Solid tumours only (phase | & Il)

Phase 1b: Myeloma in first remission or first NCT01330173

relapse post ASCT
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Table 1 Summary of available inhibitors which target self-renewal pathways involved in myeloid malignancies (Continued)

FOXO/TGFB
[35]

C-MYB [36]

BMS-833923

IPI926
PF-04449913

GANT61
Rapamycin
LY294002
LY364947

C-MYB AS ODN

SMO antagonist

SMO antagonist
SMO antagonist

Direct GLI inhibition
Inhibitor of mTOR
PI3K inhibitor

PI3K inhibitor

Infusional C-MYB anti-sense oligodeoxy
nucleotides

Bristol-Myers Squibb

Infinity

Pfizer

Generic

Generic

Merck
Merck

University of Pennsylvannia

Phase 1: CML - in combination with Dasatinib NCT01218477

Phase 1b: Myeloma - in combination with NCT00884546
Lenalidomide with Dexamethasone or Bortezomib
with Dexamethasone

Phase 2: Myelofibrosis NCT01371617

Phase 1: CML - in combination with Dasatinib or ~ NCT00953758
Bosutinib

Non-clinical

No current clinical trials in haematological
malignancies

Non-clinical

Non-clinical

Phase 1 - In Advanced Hematological NCT00780052
Malignancies
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Notch signaling
Interest in the role of Notch signaling in hematopoiesis
arose following the discovery that Notch mutations
occur at a high frequency in T-ALL [52]. High levels of
the ligands that induce Notch signaling are present on
the membrane of stromal cells, with Delta 1 & 4 and
Jagged 1 & 2 expressed in the thymus, and Jagged 1 in
the BM stroma [53,54]. Notch receptors are expressed
by hematopoietic progenitor cells and by immature thy-
mocytes (predominantly Notch 1 and Notch 3) [55,56].
Signaling is initiated when the large extracellular domain
of the Notch receptor binds a membrane-bound ligand
on a neighbouring cell. The glycosylation status of the
Notch receptor is modified by Fringe proteins (radical,
maniac and lunatic), and these post-translational modifi-
cations are important for ligand binding. When Notch
interacts with a ligand, proteolytic cleavage is initiated at
two sites; the first occurring externally to the transmem-
brane region and mediated by the action of ADAM
metalloproteases. The second cleavage occurs within the
transmembrane domain and is mediated by a multi-
protein protease complex known as y- secretase. This
releases intracellular Notch (ICN), which translocates to
the nucleus and binds to the nuclear transcription factor
CSL. Binding induces the dislocation of repressors such
as Mint and Nrap, and allows recruitment of co-
activators, such as Mastermind (Maml), resulting in the
transcription of Notch target genes. The best known
target genes encode Hairy-Enhancer of Split (Hes) 1 and
Hes5, Hes-related repressor protein (Herp), NRARP and
Notchl [57]. Although Notch signaling has been impli-
cated in the maintenance of HSC, and is thought to
cross-talk with Wnt signaling in the BM niche to
regulate self-renewal capacity [58], its role in LSCs is still
not fully defined, however various reports suggest it can
suppress differentiation and augment the immature cell
phenotype in myeloid leukemias. Consistent with this is
the finding that Notch signaling is down-regulated in
AML, and activation of it, targets LSCs, inducing apop-
tosis, and promoting differentiation to dendritic cells
and macrophages [59,60]. Down-regulation of the path-
way can also cooperate with loss of Tet2 to induce an
AML-like disease in mice [59]. These studies demon-
strate a potential therapeutic window using Notch
receptor agonists to target AML. Down-regulation of the
pathway has also been reported in CMML, with inhi-
bition of Notch signaling resulting in an accumulation of
aberrant myeloid progenitors and a CMML phenotype
in mice [61]. In addition HesI is highly expressed in
blast-crisis CML and retroviral co-expression of Hesl
with BCR-ABL in a murine model led to an aggressive
acute leukemia [62].

To date, only clinical trials of the y-secretase inhibitor
(GSI) MK-0752 in hematopoietic malignancies have
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been performed in T-ALL patients (see Table 1);
however a number of studies are currently recruiting in
solid tumours, in particular breast cancer, where GSIs
may play a role in reversing resistance to hormone
therapies [63].

Hedgehog signaling

Hedgehog (Hh) signaling plays an important role in
developmental hematopoiesis, promoting HSC self-
renewal and expansion to establish definitive hema-
topoiesis. However its role in adult hematopoiesis has
been controversial with mouse genetic studies indicating
that the pathway is dispensable for steady state hema-
topoiesis [64]. These findings may provide a therapeutic
window that can be exploited in haematological malig-
nancies as abnormal Hh signaling has been associated
with AML and CML [34,65-68]. Hh ligands, Sonic
(SHh), Desert (DHh) and Indian (IHh) are produced in
the BM niche where they bind to their receptors patched
(PTCH) 1 and 2, which releases PTCH inhibition of
smoothened (SMQO). SMO is a membrane protein
related to G protein-coupled receptors, which when
activated enhances nuclear translocation of the GLI
family of zinc finger transcription factors, GLI1, GLI2,
and GLI3. While GLI3 is predominantly a transcriptional
repressor, GLI2 exists in both a full length active form
and a truncated repressor form. Activated SMO alters
the balance between these forms. In the absence of Hh
signaling, SMO is inhibited, resulting in GLI2 and GLI3
being retained in the cytoplasm by a protein complex
including the inhibitory molecule Suppressor of Fused
(SUFU). This results in the phosphorylation of GLI2 and
GLI3 at multiple sites by PKA, GSK3p and CKI,
targeting them for proteasomal degradation to generate
truncated repressor forms. In the presence of Hh ligand,
SMO is enriched at the plasma membrane, GLI2 and
GLI3 phosphorylation is prevented and full length active
forms translocate to the nucleus [69]. This activates the
transcription of downstream targets that include both
positive (GLII) and negative (PTCHI1/2) -regulatory
elements of the pathways as well as target genes such as
the ATP-binding cassette (ABC) transporter family
members; P-glycoprotein (Pgp), multi-drug resistance
protein-1 (MDRI) and breast cancer resistance protein
(BCRP; ABCG2) [70] as well as the anti-apoptotic gene
BCL-2, whose transcription is directly regulated by GLI1
and GLI2 [71]. Several lines of evidence demonstrate the
importance of the Hh pathway in the maintenance of
LSCs in CML. The use of mouse models has demon-
strated that retrovirally delivered BCR-ABL can initiate a
CML-like disease that is stem cell dependant, Dierks
and co-workers demonstrated that the Hh target genes
Glil and Ptch were up-regulated in the LSCs compared
to HSCs. A finding that was confirmed in CD34" cells
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from CML patients relative to CD34" cells from healthy
controls [66]. In addition, SMO was up-regulated at the
protein level, in all BCR-ABL positive cells in both the
mouse model and human CML samples. Furthermore,
inhibition of the Hh pathway by inactivating SMO with
KAAD-cyclopamide caused a reduction in the self-
renewal capacity of BCR-ABL positive LSCs. Further
confirmation of the role of the Hh pathway comes from
a murine model where SMO is deleted in the hema-
topoietic compartment during embryogenesis. In this
model, BCR-ABL transduced BM cells showed lower
LSC numbers and a resultant impairment in their
ability to initiate CML-like disease compared to con-
trols [66].

Inhibitors that antagonise SMO are currently being
investigated in a number of trials, as outlined in
Table 1.

Transforming growth factor beta (TGFf )
superfamily signaling

This family of ligands include TGEp, the activins and the
bone morphogenetic proteins (BMPs), which regulate an
extensive array of fundamental processes during develop-
ment and postnatally through the Smad signaling path-
way. Ligand binding activates the serine/threonine kinase
receptors to phosphorylate receptor activated Smads
(R-Smads). TGFp and activin signaling activate R-Smad 2
and 3, whereas BMP signals are transduced through R-
Smads 1, 5 and 8. These associate with the common
partner Smad 4 (Co-Smad 4), creating a complex which
translocates to the nucleus to facilitate target gene tran-
scription. Activation is prevented through inhibitory
Smads (I-Smads) 6 & 7 [72]. TGFp has potent anti-
proliferative properties and is thought to be a key modula-
tor of HSC quiescence. In addition, TGFp plays a principle
role in immune cell homeostasis and function with, mice
developing a lethal inflammatory disorder when TGFpB1 or
its receptors are knocked out [73,74]. TGFf1-null mice
also displayed enhanced myelopoiesis suggesting that
TGEFP1 acts as a negative regulator of myelopoiesis [73].
BMPs have been implicated as key regulators of hema-
topoietic development in a variety of species, however
their role in steady state adult hematopoiesis is unclear.
Evidence suggests that BMPs and Hh cross-talk within the
BM niche and play a role in controlling HSC numbers
[75]. The TGFP pathway has been implicated in the
maintenance of LSCs in CML via Akt activation [76].
It has also been shown that in AML, TGEFB/BMP2
signaling can inhibit the re-plating potential of cells
transformed by HoxA9 deregulation. This is achieved
via the binding of Smad 4, which blocks the ability of
HoxA9 and its fusion protein Nup98-HoxA9 to target
DNA sequences [77].
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Hox genes

Another important group of self-renewal related genes
are those of the Hox cluster. Wnt and BMP signaling
converge to regulate the Cdx family of homeobox
transcription factors, master regulators of Hox gene
expression [78,79]. Consensus binding sites for the three
Cdx homologues Cdx1, Cdx2, and Cdx4 are present in
the promoters of multiple Hox genes [80,81]. Substantial
evidence has now linked aberrant expression of Hox
genes to the pathogenesis of myeloid malignancies, espe-
cially the self-renewal of AML and CML stem cells
[82,83]. It is particularly noteworthy, that the majority of
human AML samples display deregulation of Hox gene
expression. This may in part be due to the aberrant
expression of Cdx2, which is up-regulated in 90% of
AML samples, but not expressed in normal adult
hematopoietic tissue [84]. In AML, Cdx2 activation also
results in the silencing of the transcription factor KLF4
which acts as a tumor suppressor in the myeloid com-
partment. Modulation of Cdx2 activity using the PPARy
agonist prostaglandin J2, can restore KLF4 levels, reduce
human LTC-IC frequency (an in vitro surrogate marker
of stem cell activity) and induce apoptosis in a murine
model, making Cdx2 an attractive therapeutic target
[85]. Fusions of the HoxA9 or HoxD13 genes with
NUP98, a gene that encodes a component of the nuclear
pore complex, have been described in AML, and recapit-
ulates AML in murine models of disease [86,87]. Over-
expression of individual Hox family members, including
HoxB3 [88], HoxB8 [89], or HoxA10 [90], by retroviral
expression or retroviral insertion mutagenesis also
generates AML in murine models. In addition, up-
regulation of specific Hox genes, such as HoxB4 or
HoxAY9, is associated with expansion of the HSC com-
partment in vitro and in vivo and results in enhanced
competitive repopulating activity in murine transplant-
ation experiments [91,92]. Cdx4, has been shown to
enhance the replating potential of HSCs [92]. The
targets of Cdx4 appear to be HoxA6, A7, A9, B4, B6, B8
and C6. HoxA9, for example, has been shown to be
required for self-renewal and its expression correlates
with a poor prognosis in CML [93]. The co-activator
Meisla is required for Cdx4 induced leukemia initiation.
Meisl also acts as a cofactor for HoxA7 and A9 in the
generation of myeloid leukemias [92,94]. The HoxA9/
Meisl transcriptional regulation complex also up-
regulates c-Myb, a current target for a phase 1 clinical
trial, inducing a self-renewal transcriptional programme
that overlaps with the embryonic c-Myc programme
[95]. This pathway can also be induced by various
chimeric MLL histone methyltransferase oncoproteins.
The methyltransferases themselves may be good poten-
tial therapeutic targets as hDOTI1L has been shown to
maintain Hox gene expression by MLL-AF10, MLL-ENL
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and CALM-AF10 fusions [96]. Furthermore, recent
small molecule inhibitors of DOT1L such as EPZ00477,
have been developed, and shown to decrease MLL fusion
protein target gene expression, induce cell cycle arrest
and increase the expression of the myeloid differenti-
ation marker CD14 in MOLM-13 cells [97,98]. Effica-
cious concentrations of this compound are also well
tolerated by mice, making it an attractive prospect for
clinical use [97].

Cross-talk between signaling pathways

There are several potential points of cross-talk in malig-
nant myeloid hematopoiesis. These include cross-talk
with the stroma of the stem cell niche, interaction with
normal HSCs and the immune system, and integration
of intracellular signaling pathways in the LSC. Strategies
that disrupt the LSC-stroma interaction could include
the use of mobilising cytokines such as granulocyte-
colony stimulating factor or agents that affect the
homing and retention of LSCs in the stem cell niche.
This would remove LSCs from a self-renewal support-
ing niche and potentially predispose them to differenti-
ate. Such potential targets that have shown in vivo
promise include the a4f1 integrin receptor VLA4, the
CXCL12 receptor CXCR4 and the osteopontin receptor
CD44 [99-103].

As highlighted above, certain intracellular signaling
molecules impact on more than one pathway, indicative
that these pathways converge to maintain self-renewal
potential. One study reports on the role of STAT3 in
cross-talk between the Wnt and Hh pathways [104]. The
authors propose that paracrine SHh activates STATS3,
which then turns on the expression of autocrine SHh
and Wnt3a in CML cells, making the cells less depen-
dent on the BM for these important self-renewal factors.
In the BM niche, this increased expression of Wnt3a by
the LSCs may also lead to an increase in Notch ligand
production by stromal cells, providing further self-
renewal signals. A role for STAT3 in up-regulating
Wnt3a inducible genes (Lefl and Cyclin DI) has also
been suggested, however whether these effects are due
to the transcription factor activity of STAT3, or its abil-
ity to interact with and modify the activity of other sig-
naling proteins needs to be verified. The authors also
report a small increase in the SHh pathway inhibitor
PTCH1 following Wnt3a stimulation of CML cells,
suggesting that Wnt signaling may play a negative regu-
latory role on the SHh pathway [104]. There is also a
potential link between the HoxA1l0 down-regulation
noted in this study and increased Wnt signaling as the
negative Wnt pathway inhibitor protein dickkopf-1
requires HoxA10 for its expression [105]. A number of
studies suggest that the regulation of B-catenin stability
may be an important event in the regulation of LSC
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growth and self-renewal pathways. It has been suggested
for example, that FoxO in response to ROS, may bind to
B-catenin and stabilise it, causing enhanced signaling. It
is also possible that FoxOs can compete with B-catenin
for the limited cellular pools of TCF [106]. Other studies
have also shown that E and N-cadherin interactions may
also sequester [-catenin levels in HSCs, and down
modulate the expression of Wnt targets of self-renewal,
like Myc. This interaction can be perturbed by the
transmembrane metalloproteinase ADAM10, which can
cleave N-cadherin and allow p-catenin to access the Wnt
signaling pathway [107]. This would make ADAMIO0 a
potential therapeutic target that could modify Wnt signal-
ing in both stromal and LSCs. B-catenin can also be
stabilised via CD27 ligation. This is through an inter-
action with TRAF2 and NCK interacting kinase [108].
This complex binds to and transactivates the TCF/LEF
complex.

FoxOs act as sensors of ROS, and effectors of the TGF
and Notch pathway where they promote self-renewal
[35]. However, too much ROS can kill LSCs, and the
balance of ROS appears to be regulated in part through
HoxB4 and Prdm16 mediated up-regulation of glutathi-
one peroxidase 3, with high levels of expression
favouring LSC maintenance and an aggressive AML
phenotype [109]. In AML low levels of Akt activity has
been associated with elevated FoxOs and enhanced
maintenance of LSC’s whereas depletion of FoxO3
results in increased differentiation and apoptosis. Inhi-
bition of FoxO either directly or via increased Akt
activation can also result in enhanced JNK/c-Jun signal-
ing which suppresses apoptosis of AML cells highlight-
ing the importance of these pathways in sustaining the
function and immature status of LSCs [110].

The activation of Akt inhibits the activity of GSK3p,
potentiating Wnt and Hh signaling pathways as des-
cribed above. In addition, in frame splice mutants of the
GSK3B kinase domain increase [-catenin expression
resulting in enhanced serial engraftment of blast-crisis
CML progenitors into immunocompromised mice [111].
Furthermore, GSK3p may be required for the inhibition
of Notch signaling, and the suppression of c-Myb
expression [112]. As well as its negative effects on LSC
self-renewal, in some instances evidence suggests that
GSK3p activation can promote the proliferation/main-
tenance of LSCs. For example, MLL histone methyl-
transferase oncoproteins have been shown to be
dependent on the GSK3B mediated activation of a
variety of Hox/Meisl target genes for their proliferative
effects on LSCs [113]. Clearly, the function of GSK3p in
LSC biology is context dependant, and therapeutic
intervention will need to be sensitive to the particular
molecular lesions and self-renewal pathways involved in
any particular myeloid malignancy.



Sands et al. Cell Communication and Signaling 2013, 11:33
http://www.biosignaling.com/content/11/1/33

Targeting self-renewal pathways in LSC

Many small molecule inhibitors have been developed
which are capable of targeting different molecules within
self-renewal pathways. These agents are at different stages
of pre-clinical and clinical development; indeed some well
known drugs, e.g. non-steroidal anti-inflammatory drugs
(NSAIDs) have effects on self-renewal. Given that various
pathways can cross-talk, or amplify the input signals the
LSC receives, combined targeting of different pathways
may prove to be a fruitful area of future investigation.
Table 1 indicates those pathways where inhibitors have
been developed and also identifies relevant ongoing or
recently completed clinical trials in hematological malig-
nancies using these agents.

Conclusions

Self-renewal pathways are currently an area of major
study in myeloid malignancies. There is increasing
evidence that the development of novel clinical agents
which specifically target LSCs is essential to cure these
stem-cell derived malignancies. Thus, understanding the
aberrant expression of self-renewal pathways and cross-
talk between these pathways in LSCs is essential for the
development of novel treatment strategies. It is highly
likely that a successful strategy for curing leukemia will
consist of a targeted LSC therapy in combination with
standard chemotherapy agents (e.g. anthracyclines, cyto-
sine arabinoside, fludarabine) in AML and TKIs in CML
to eradicate the LSCs and kill the bulk leukemia blast
cells, respectively. The timing of administration of differ-
ent agents is likely to be critical and will require careful
pre-clinical studies to ensure successful clinical trials.
One possible approach would be induction therapy with
standard chemotherapy in AML or TKIs in CML to
reduce the bulk leukemia cells followed by LSC-directed
therapy when tumor burden is low, i.e. minimal residual
disease (MRD) has been achieved, to eliminate LSCs.
For this approach to be successful further work needs to
be performed in a number of areas including: (a) the
development of more clinical grade self-renewal pathway
modulators; (b) the development of sensitive and robust
tests to monitor MRD (e.g. quantitative RT-PCR for
BCR-ABL in CML); and (c) the development of assays to
allow measurement of the rare LSC population size and
functionality. When successfully achieved in myeloid
leukemias, these approaches can then be adopted in
other stem-cell driven malignancies.
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