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Abstract 

Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, includ-
ing tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflamma-
tory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating 
a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveil-
lance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells 
evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecu-
lar mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic 
enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), 
which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple 
studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation 
of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer 
resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-
resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune 
surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms 
of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolip-
ids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily 
effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be 
thoroughly assessed in future studies.
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Introduction
Remarkable innovations in cancer therapies have been 
achieved during the last few decades. Despite break-
throughs in treatment, cancer cells still manage to escape 
host immunity, survive, and progress towards treatment 
resistance in a subset of patients via multiple mecha-
nisms, many of which remain unclear. One of the com-
mon reasons for inefficient cancer elimination is tumor 
immune evasion, the key mechanism that facilitates the 
failure of immune surveillance [1, 2]. During the efficient 
surveillance, cancer cells are designated for clearance if 
recognized as anomalous; and immune killing mecha-
nisms are activated [1, 3]. The most successful endog-
enous death-initiating mechanisms rely on cytotoxic 
cytokines generated by natural killer (NK) T cells and/or 
phagocytes [1, 4, 5]. During acquisition of immune eva-
sion strategies, the resistant cancer cell develops molec-
ular tools which grant it immunity from NK-mediated 
cytotoxicity and cytokine attacks [6, 7], resulting in the 
activation of immunosenescence and promotion of an 
immunosuppressive tumor microenvironment (TME) 
[4].

A number of recently developed anticancer/immuno-
therapy pharmaceuticals aim to restore and strengthen 
internal surveillance capacity [1, 2]. The immune pro-
gram relies on CD8+ and NK (CD3+ T lymphocytes) T 
cell subsets which can identify cancerous (as non-self ) 
cells and delete them through complex clearance mecha-
nisms, including release of inflammatory cytokines such 
as interferon-γ (IFN-γ) and tumor necrosis factors (TNF) 
[1, 8]. Initially defined as an endotoxin‐induced cytokine, 
TNF-α has demonstrated potent cancer-eradicating 
properties [9]. The ability to suppress cytotoxic cytokine 
signaling is a crucial survival adaptation for tumor cells. 
Notably, disruption of TNF-mediated cell death, nor-
mally initiated by CD8+ T cells, has been regarded as a 
major mechanism of immune evasion [1]. TNF-α is pro-
duced by the majority of immune cells, including mac-
rophages, neutrophils, fibroblasts, keratinocytes, NK 
cells, T cells and B cells [5]. The cytokine activates apop-
tosis mainly through the death receptor (DR) pathway 
that is initiated by TNF-α receptor‐1 and -2 (TNFR1 and 
TNFR2) [10, 11]. TNF-α targets not only cancer cells, but 
also tumor-associated vasculature [6, 12, 13].

The internal tumor-related characteristics (can-
cer type and stage) and TME define the proapoptotic 
effects of TNF-α and its ability to inhibit tumor pro-
gression [6, 14]. For instance, human lymphoma is, 

generally, a TNF-sensitive type of cancer that demon-
strates good immunotherapy response [15]. However, 
many solid tumors, including some breast malignan-
cies, are intrinsically resistant to TNF-α effects. Cancer 
cell resistance to TNF-α cytotoxicity is a complex, mul-
tifactorial, and often unclear process. Several intrinsic 
factors and molecular mechanisms have been found 
responsible for the development of TNF-resistance, 
including mutation and downregulation of DR expres-
sion [10], activation of anti-apoptotic effectors (such as 
superoxide dismutase (MnSOD or SOD) [16, 17] and 
mitogen-activated protein kinase (MAPK)) [18]), diver-
sion of nuclear transcription factor signaling (including 
nuclear factor kappa-light-chain-enhancer of activated 
B cells κB (NF-κB)) signaling [19]), and other pro-
survival mechanisms. One of the survival pathways 
associated with anti-apoptotic and growth-promoting 
mechanisms is represented by the sphingolipid signal-
ing axis [20, 21]. Sphingolipids are involved in the regu-
lation of numerous intracellular mechanisms, both as 
mediators and effectors of signaling.

Besides regulation of cancer cell growth and metas-
tasis, sphingolipids direct lymphocyte trafficking and 
cytokine responses, which are key factors in the resolu-
tion of inflammation [22–24]. The TNF-α/TNF receptors 
(TNFRs) network has been shown to trigger activation 
of sphingolipid signaling via sphingosine kinases 1 and 2 
(SphK1 and SphK2). SphK1/2, “housekeeping” enzymes, 
are constitutively expressed and function to support the 
membrane metabolism in all cell types, including cancer 
and immune cells. These enzymes are responsible for the 
synthesis of sphingosine-1-phosphate (S1P), an estab-
lished regulator of pro-survival machinery in multiple 
cancers. S1P and its transmembrane receptors (S1PRs) 
were found to be involved in the regulation of cytokine 
signaling and chronic inflammation [23–25]. Considering 
that sphingolipids, particularly those within the SphK/
S1P/S1PR axis, are important effectors in the regulation 
of cancer cell survival and immune responses, these mol-
ecules may be considered as the key contributors to the 
development of immunotherapy resistance. However, the 
role of sphingolipids in the development of solid cancer 
resistance to immunotherapies and specifically to TNF-
α-induced apoptosis remains to be clarified. Therefore, 
this review aims to discuss mechanisms of sphingolipid 
involvement in TNF-α-resistance in cancer cells and pro-
vide insights into the association of immune evasion with 
regards to SphK/S1P/S1PR axis.

Keywords Tumor necrosis factor-α, Immunotherapy, Cancer drug resistance, Apoptosis, Sphingosine kinase, 
Sphingosine-1-phosphate, Sphingolipids
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TNF superfamily signaling network: the cell death 
gatekeeping system
The TNF superfamily and TNFR network are cru-
cial regulators of the extrinsic cell death (apoptosis) 
pathway and cancer cell surveillance [10, 26, 27]. The 
superfamily consists of signaling molecules (referred 
to as cytokines) that bind 29 corresponding recep-
tors, including TNFRs [14, 27, 28]. Respective of what 
stimuli and/or receptors are involved, TNFRs can trig-
ger not only several types of programmed cell death 
(apoptosis, necrosis, and anoikis), but also cell dif-
ferentiation, migration, and proliferation [28–30]. 
The death-triggering mechanisms have been exten-
sively reviewed [26, 28]. Several TNFR subtypes have 
been grouped according to the presence or absence 
of intracellular death domains (DDs, six α-helical fold 
fragment) [29]) (Fig.  1). The DD-containing subfam-
ily includes TNFR1 (often named as p55, or DR1, or 

TNFRSF1A), Fas (CD95/TNFRSF6), DR3 (TNFRSF25), 
TNF-α-related apoptosis-inducing ligands (TRAIL) 
receptor 1 (TRAIL-R1, 1TNFRSF10A, DR4, CD261), 
TRAIL receptor 2 (TRAIL-R2, TNFRSF10B, DR5, 
CD262) [2, 4], DR6 (TNFRSF1), and EDAR [28, 31].

The complexity of TNFR network is associated with the 
continuously expanding TNF superfamily of cytokines 
which presently includes 19 different ligands. TNF-α 
and TNF-β were identified several decades ago and have 
since been heavily studied. Other TNFR ligands, includ-
ing homologous lymphotoxin (LT), ligands for Fas (or 
CD95), TRAIL (or APO2L), receptor activator of NF-κB 
ligand (RANKL), and osteoprotegerin ligand (OPGL) are 
relatively new members of this large family with poorly 
defined roles in cancer surveillance [14, 32, 33]. The full-
length TNF-α is encoded by the TNF-α gene on human 
chromosome 6 [5]. TNF isoforms interact with TNFR1 
and TNFR2 (defined as p75 or DR2) [11, 29, 32], lead-
ing to the formation of two signaling complexes I and II 

Fig. 1 Death receptors (DR) and their ligands intracellular network. Ligands (FasL, TRAIL, TNF-α, TL1) can activate signaling cascades required 
for the activation of apoptosis and other complex cell responses. TNF-α/TRAIL/FasLs (and other ligands) bind the corresponding receptors (Fas, 
TRAIL-R1, and TNFR1) and activate apoptosis and necroptosis through interactions between death domains (FADD), TRADD adapter, and various 
caspases. Both TNFR1 and TNFR2 can trigger the classical NF-κB signaling. Binding of TNF to TNFR1 results in the formation of protein Complex 
I. Recruitment of IKKα/β through NEMO promotes activation of NF-κB and TAK1 induces MAPK signaling. Activation of the alternative NF-κB 
pathway is also possible via multiple mechanisms, leading to induction of survival effectors (MAPK and FLIP) which may counterbalance apoptosis 
(conditional). Complex I formation may also trigger pro-inflammatory and survival gene expression through these signaling pathways. Complex 
II formation results in the activation of caspase-8 and apoptosis. Should caspase-8 be inhibited, necroptotic cell death can occur instead. 
Abbreviations: FasL, Fas ligands; TRAIL, TNF-related apoptosis-inducing ligand; TNF-α, tumor necrosis factor-α; TL1, a novel TNF-like cytokine; TNFR1, 
TNF-α receptor 1; TNFR2, TNF-α receptor 2; FADD, FAS-associated death domain protein; TRADD, TNF receptor type 1-associated death domain 
protein; NF-κB, nuclear factor-κB; IKKα/β, IκB kinase α/β; NEMO, NF-κB essential modulator; TAK1, TGFβ-activated kinase 1; MAPK, mitogen activated 
protein kinase; FLIP, FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein
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and cell death induction [3, 34] (Fig. 1). TRAIL can also 
induce apoptosis via binding to DR4 and DR5 in cancer 
cells [35, 36]. Fas and TRAIL receptors, the dual-signal-
ing receptors, belong to the third DR subfamily with DD 
at their C-termini and TRAF recruitment domains at the 
opposing N-termini, providing them with the ability to 
activate NF-κB [34]  (Fig.  2). Like the other members of 
the TNFR family, DR4/5 not only activate apoptosis, but 
can also regulate cell differentiation and proliferation [28, 
30]. Functional TRAIL receptors (DR4/DR5) are widely 
expressed [37].

Activation of TNFR1 by its ligand is followed by recep-
tor solubilization, membrane shedding, and binding 
of TNFR-associated death domain (TRADD), TNFR-
associated factor 2 (TRAF2), receptor-interacting pro-
tein (RIP) kinase (RIPK) and transforming growth 
factor-β-activated kinase 1 (TAK1) proteins, leading to 
the activation of the classical NF-κB pathway [10, 32]. 

Recruited TRAF triggers ubiquitin ligase complexes (the 
upstream activator of NF-κB, activator protein 1 (AP-1)), 
p53 (tumor suppressor), and other transcription factors 
(Fig.  1) [10, 14, 32]. The internalized TNFR1 complex 
may also activate growth-regulating MAPK signaling 
effectors, including c-Jun N-terminal kinase (JNK) and 
p38 cascades [30, 33], ERK1/2 pathway, Fas-associated 
death domain (FADD)-like IL-1β-converting enzyme 
(FLICE) inhibitory protein (FLIP) [38], Bcl-2 (B-cell lym-
phoma 2) and Bcl-xL, and nitric oxide (NO) production 
[18, 38, 39]. Both TNFRs can also activate the phosphati-
dylinositol 3-kinase (PI3K)/Akt (protein kinase B) anti-
apoptotic pathway in a TRAF2-dependent manner [30, 
40, 41]. During DR-dependent activation of NF-κB and 
p53, TNF-α triggers extensive downregulation of XIAP, 
as well as cellular inhibitors of apoptosis protein-1 and -2 
(cIAP1 and cIAP2), resulting in DNA fragmentation [42]. 
For instance, TNF-α was shown to induce apoptosis and 

Fig. 2 The dichotomy of TNF/TNFR effects is associated with activation of antagonizing effects, both promoting and counteracting cell death 
in immune cells. The resulting effect is defined by the active involvement of intracellular death machinery, which may be overruled by activation 
of pro-survival effectors. Both pathways lead to production of cytokines and propagation/differentiation of specific immune cells and their 
recruitment to the site of infection. Abbreviations: DAMPs, damage-associated molecular patterns; MAPK, mitogen-activated protein kinase; NF-κB, 
nuclear factor kappa B; PAMPs, pathogen-associated molecular pattern molecules; PRR, pattern recognition receptors; TNF-α, tumor necrosis 
factor-α; TNFR1, tumor necrosis factor-α (TNF-α) receptor-1; Ub, ubiquitin
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DNA fragmentation within 24 h of treatment in MCF-7 
mammary adenocarcinoma cells [42]. The quick (non-
genomic) effects of TNF-α in MCF-7 cells start with 
the internalization of TNFR1. This results in the activa-
tion of caspase 8 and the cleavage of BID (a pro-death 
Bcl-2 family protein) [43]. Truncated tBID migrates to 
the mitochondria, causing activation of Bcl2 associ-
ated X protein (Bax)/Bcl-2 antagonist killer 1 (Bak), and 
release of cytochrome c (cyt c) [37, 43]. Following this, 
mitochondrial damage, and excessive production of reac-
tive oxygen species (ROS) were observed [44]. Together 
with activated caspase 9, cyt c induces formation of the 
cytoplasmic apoptosome and irreversible propagation of 
apoptosis [37]. Death receptor (DR) activation can also 
inhibit expression of anti-apoptotic Bcl-2 and Bcl-xL 
[34, 39, 45].

TNF expression is tightly regulated in normal 
cells and commonly induced during pro-inflamma-
tory responses in various immune cells, fibroblasts, 
endothelial, and epithelial cells [46]. Macrophages 
and T cells are the major sources of secreted TNF-
α, which targets all innate immunity cells responsible 
for pro-inflammatory effects in the TME, including 

differentiation of CD4+/CD8+ T cells [47, 48]. TNF-α 
may simultaneously activate both anti- and pro-apop-
totic signals, that are required for the adaptation of 
immune system responses to dynamic intrinsic and/or 
extrinsic changes (Fig. 3). Using its non-apoptotic net-
work, TNF-α induces differentiation of various immune 
cells, including monocytes/macrophages, microglia, 
Langerhans cells, and Kupffer cells [27]. Cancer spread-
ing (metastasis) may also be triggered by TNF-α via 
the epithelial-to-mesenchymal transition (EMT) pro-
cess [47, 49]. The activation of survival mechanisms 
was also noted during DR signaling in cancer cells and 
cells within the TME [5, 13, 40]. For instance, despite 
previously showing destruction of cancer-supporting 
blood vessels by TNF-α in cancer patients [12], intra-
cellular TNFR1 signaling in endothelial cells activates 
two opposing pathways, one with pro-apoptotic effects 
[12], and another NF–κB-mediated pro-survival path-
way [5, 13]. The multidirectional outcome of TNF-α 
signaling demonstrates the convoluted nature of this 
cytokine’s mechanistic actions, many of which remain 
largely unclear. The major anti-apoptotic effectors and 
pathways are discussed in this study, focusing on their 
connections to the sphingolipid network.

Fig. 3 Involvement of TNF-α in the regulation of immune cell differentiation during inflammation and cancer progression. Promoting 
reprogramming of the TME, TNF-α was suggested to play central role as a connector of inflammation with cancer spreading. Abbreviations: INF-γ, 
Interferon‐γ; TH1, Type 1 T helper cell; TH2, Type 2 T helper cell; TNF-α, tumor necrosis factor-α
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Conventional mechanisms of TNF‑α/TRAIL 
resistance in cancer cells
Cancer cells adapt to avoid recognition and elimination 
by the immune system (referred to as cancer immune 
evasion) [41]. Resistance to TNF-α/TRAIL is cancer-spe-
cific and can be mediated by several anti-apoptotic mech-
anisms. Among the most prominent TNF-α-resistance 
mechanisms are abnormal DR expression and func-
tioning [50, 51], stoichiometry of the relevant ligand, 
heterozygous mutations and/or post-translational modi-
fications of DRs and their ligands [50], mitochondrial 
dysfunctions, deficiency (lower expression or silenc-
ing) of key pro-apoptotic proteins/apoptosis pathway 
effectors (tumor intrinsic and host-related factors), low 
immunogenic capacity of immune effectors in the TME, 
and activation of complex pro-survival machinery [39, 
51, 52]. Inhibition of TNF-α/TNFR-associated apopto-
sis was also detected in cells with dysregulated oxidative 
phosphorylation (OXPHOS) and/or abnormal expres-
sion/signaling of energy metabolism regulators, such as 
MnSOD [17, 53]. Considering the high level of cancer 
heterogeneity, complex resistance mechanisms may be 
present within one cancer tissue. Accordingly, the out-
come of TNF/TRAIL-induced responses is determined 
by the relative contribution of the combined apoptotic 
signals, transmitted by DRs and their downstream tar-
gets, and pro-survival actions of cIAPs and other pro-
survival effectors, including the growth-promoting and 
immunomodulatory components of the sphingolipid 

network. In TNF-α-resistant cancer cells, the combined 
pro-apoptotic signals are overwhelmed by pro-survival 
machinery, leading to cancer progression (Fig. 4). Nota-
bly, sphingolipid signaling contributes to many of the 
forementioned mechanisms. In this study, immune 
evasion-linked mechanisms of TNF/TNFR interactions 
within the sphingolipid network will be covered. The 
sphingolipid signaling axis is a recent addition to the 
list of cancer resistance-promoting modalities. Notably, 
sphingolipids were shown to be part of many different 
pro-survival and growth-stimulating networks, and thus 
may contribute to TNF-α resistance at multiple levels 
[21, 54].

Sphingolipids as mediators, facilitators, 
and inhibitors of TNF‑α‑signaling
SphK/S1P/S1PR axis: focus on growth‑promoting 
and anti‑apoptotic effects
A significant role in the regulation of sphingolipid signal-
ing and metabolism by TNF-α has been demonstrated in 
multiple studies [13, 21, 55–57] (Table  1). In turn, both 
pro-survival and pro-apoptotic sphingolipids were impli-
cated in the regulation of TNF-α/DR-induced effects.

For instance, activation of apoptosis by DRs has previ-
ously been shown to downregulate SphK1 protein expres-
sion and activity via proteasomal degradation [158, 159]. 
Sphingolipids are not only structural components of all 
biological membranes, but also signaling and regulatory 
molecules. The variety of sphingolipid family members 

Fig. 4 Interplay between cancer cell intrinsic factors, TME, and host-related factors that contribute towards the development of TNF/TRAIL 
resistance and metastasis. Abbreviations: Bcl-2, B-cell lymphoma 2; BMI, body mass index; DCs, dendritic cells; DR, death receptor; FLIP, FLICE 
(FADD-like IL-1β-converting enzyme)-inhibitory protein; IAPs, inhibitors of apoptosis; MiRs, micro ribonucleic acids; ROS, reactive oxygen species; 
TAMs, tumor-associated macrophages; TNF, tumor necrosis superfamily; TRAIL, TNF-related apoptosis-inducing ligand; Tregs, regulatory T cells
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and their functions have been reviewed previously [160, 
161]. The accumulation of apoptosis-inducing members, 
ceramide and sphingosine, was noted during DR-signal-
ing [54, 160, 161] (Fig. 5) (Table 1). Key enzymes respon-
sible for ATP-dependent metabolism of sphingosine and 
generation of S1P include SphK isoforms (SphK1 and 
SphK2), which are found in cytoplasmic, mitochondrial, 
and nuclear compartments [57, 153, 161, 162]. Activa-
tion of SphK1 and S1P synthesis are responsible for 
growth-stimulating and pro-survival effects in normal 
and cancer cells [21, 54, 57, 163]. The role of SphK1 will 
be considered as a counterbalancing anti-apoptotic force 
for DRs in this review [61, 164]. Both SphK1 and SphK2 
were suggested to mediate numerous cellular responses 
to external stimuli and stress [21, 54, 151, 153]. Notably, 
SphK2 was reported to suppress proliferation and facili-
tate propagation of apoptosis, thus playing an opposite 
role to SphK1, although this hypothesis remains to be 
confirmed [25, 165]. The roles of SphK2 in DR signaling 
and propagation of apoptosis have been discussed previ-
ously [166].

S1P is a multifunctional messenger which can bind 
both intracellular targets and membrane-located 

(extracellular) receptors. Paracrine-, blood-, or lymph-
released S1P binds transmembrane S1P receptors 
(G-protein coupled S1PRn (n = 1–5)), which are the 
established effectors of growth and survival [21, 167] 
(Fig.  5). S1PR1 is abundantly expressed in all cell types, 
including large variety of immune cells [168, 169], indi-
cating the high importance of this receptor for the reg-
ulation of vital cell functions. The receptor signals via 
 Gi/o heterotrimeric proteins which may inhibit adenylyl 
cyclase and activate potassium channels [170].

S1PR2 is also ubiquitously expressed [168, 171], 
although the receptor signaling remains less investigated. 
Notably, S1PR2 was shown to inhibit colorectal cancer 
tumorigenesis [172]. The activation of S1PR2 or S1PR3 
was linked to the activation of  Gi/o,  Gq, and  G12/13, sug-
gesting the potential activation of large variety of down-
stream effectors [173]. Aside from normal cell types, 
S1PR3 is highly expressed in various cancer cells and was 
shown to stimulate cancer progression [21, 153, 168]. 
It is common to observe the co-expression of different 
S1P receptors, especially presence of S1PR1 and S1PR3 
within one cell type which may indicate cooperation of 
signaling among the receptors [174]. In comparison to 

Fig. 5 The sphingolipid signaling pathway. Various sphingolipids molecules (second messengers) can be derived from the membrane lipid 
sphingomyelin by sphingomyelinase (SMase) and metabolised by a “rheostat”-forming network which regulate homeostasis. Accumulation 
of ceramide and sphingosine can tip the balance towards apoptosis and other types of cell death. Activation of SphK1/2, production of S1P 
(and activation of S1P receptors), and/or S1P degradation by S1P lyase to hexadecenal and ethanolamine phosphate result in pro-survival 
and growth-promoting effects. Sphingomyelin membrane content can be restored through activation of sphingomyelin synthase (SM Synthase), 
which can also help to minimise the content of ceramide. The amount of sphingosine can be increased via inhibition of SphK1/2 and or through 
activation of S1P phosphatase
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S1PR1 and S1PR3 effects, S1PR4 was found to be growth-
inhibitory in some immune cells [175], while its role in 
the lymphocyte trafficking and expansion was extensively 
discussed [169]. The receptor may regulate the cytotox-
icity of T cells towards cancerous tissues [176], although 
downstream signaling pathways of S1PR4 remain largely 
unclear. S1PR5 was also shown to regulate T cell sub-
type maturation and functions [177].  Gi/o and  G12/13 
were shown to transmit S1PR4 and S1PR5 signals in nor-
mal and malignant cells [178]. The expression of S1PRs 
in both cancer and immune cells represents a debat-
able phenomenon which was recently reviewed [169]. 
To complicate the problem, the level of S1PR expression 
may vary during morphogenesis, cell growth and dif-
ferentiation [153]. The growth-promoting and/or pro-
carcinogenic role of S1PR1 and S1PR3 seems confirmed. 
However, current knowledge does not provide unequivo-
cal answer about the role of different S1PRs in specific 
cancer or immune cells. The problem is complicated by 
the high level of cancer and immune cell heterogeneity, 
the different combinations of S1PR expression, and diver-
sity of S1PR downstream effectors.

S1P may bind other target molecules important for 
sphingolipid metabolism and signaling. For instance, 
phosphatases can bind, dephosphorylate approximately 
half of the intracellular S1P in endoplasmic reticulum, 
and direct this sphingolipid towards de novo ceramide 
synthesis during membrane metabolism and recycling 
[57, 160] (Fig.  5). S1P lyases can also bind S1P and 
degrade it into phosphoethanolamine and hexadecenal, 
which can be used for further glycerolipid and phos-
phatidylethanolamine syntheses [57, 160]. Large amounts 
of S1P were detected in the circulation where the this 
sphingolipid forms complexes with high-density lipo-
proteins (HDL) [179]. Substantial extracellular levels of 
S1P are maintained by erythrocytes [180], platelets [181, 
182], endothelial cells [183], and various immune and 
malignant cells [24, 167]. In majority of these cells, S1P 
secretion is mediated by ATP-binding cassette trans-
porters (ABC-transporter) [180, 184]. S1P gradient, the 
difference between the intra- and extra-cellular concen-
trations of S1P, modulates S1PRs expression and repre-
sents a novel factor in the regulation of S1P signaling in 
the immune system and circulation [169, 184].

The proliferation-stimulating effect of the SphK/S1P/
S1PR axis is mediated by growth factor network, includ-
ing MAPK and epidermal growth factor receptor (EGFR) 
[21, 167, 185]. Various growth factor receptors, including 
EGFR and VEGFR, were also shown to induce SphK acti-
vation, increase the level of S1P production, and trans-
activate S1P receptors [21, 167, 185]. Aside from EGFR/
ERK1/2 [185, 186], S1PR activation influences signaling 
patterns of various global targets, such as Notch [187], 

signal transducer and activator of transcription (STAT)3 
[23], Akt/mammalian target of rapamycin (mTOR) [188, 
189], NF-κB [186, 190], Hippo-YAP pathway [191], and 
cyclic-AMP responsive element binding protein (CREB) 
[192]. Cell-, tissue-, and disease-specific expression of 
S1PR is mediated by coupling to a range of G proteins 
[193] and/or other receptors (transactivation mecha-
nisms) [21, 57]. S1PRs network interacts with growth 
factor receptors, including EGFR [167, 185], vascular 
endothelial growth factor (VEGF) receptors [22, 23], and 
IGF receptors [194]. Moreover, the SphK/S1P/S1PR axis 
may be activated by various hormones and cytokines 
during basic cell growth maintenance, cell differentiation, 
and metabolic transformations in cancer cells [21, 193]. 
The mutual transactivation of the network by growth fac-
tor effectors provides limitless opportunities to counter-
balance apoptosis.

S1P may trigger S1PR-independent mechanisms via 
binding to other non-traditional receptors, including 
transcription factors. S1P was demonstrated to induce 
S1PR-independent activation of TRAF2 [71, 72], although 
the effect seems cell- and tissue-specific [195]. S1P can 
also stimulate gene transcription via binding to histone 
deacetylase 1/2 (HDAC1/2), an epigenetic regulatory 
enzyme [196]. Activation of endoplasmic reticulum stress 
and inflammation in keratinocytes was determined to be 
mediated by S1P binding to the endoplasmic chaperone 
protein GRP94, recruitment of TRAF2 to inositol-requir-
ing transmembrane kinase/endoribonuclease 1α (IRE1α), 
and NF-κB signaling. S1P binding to heat shock protein 
(HSP) 90α was also detected [197]. S1P binds and inhib-
its ceramide synthase 2 (CerS2), leading to blockade of 
ceramide (pro-apoptotic effector) synthesis [198]. There 
may be other not-yet-identified S1P receptors, including 
some lipid mediators. For instance, myristate, a compo-
nent of milk fat, was shown to activate pro-inflammatory 
responses (such as release of TNF-α and induction of 
COX-2) in colon tissues. Observed effects of myristate 
were mediated by an unspecified, intracellular target of 
S1P and were not blocked by S1PR inhibition [163]. Thus, 
the S1PR-independent effects of S1P are not uncommon, 
indicating versatility of this sphingolipid signaling.

Regulation of apoptosis by the SphK/S1P/S1PRs axis
TNF-α-induced effects are not limited to S1P and instead 
are mediated by a variety of sphingolipids generated 
during distinct metabolic processes. It has been postu-
lated that TNF-α triggers both pro-apoptotic (ceramide-
related) [161, 185] and anti-apoptotic (SphK/S1PRs 
axis) signaling branches of the sphingolipid network [57, 
72, 92]. Activation of apoptosis and autophagy by cera-
mide has been extensively reviewed elsewhere [147, 161, 
199, 200]. A concept of dynamic sphingolipid-based 
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regulation, called a “sphingolipid rheostat”, was sug-
gested to describe a shift towards apoptosis triggered by 
increased production of ceramide; while a generation of 
S1P provides a more sustainable cell survival environ-
ment and shifts the balance toward anti-apoptotic effects 
[161, 199, 200].

Ceramide metabolism in normal and cancer cells is 
regulated by several enzymes, including glucosylcera-
mide synthase, sphingomyelin synthase, ceramide kinase, 
ceramidases, and SphK [200]. These enzymes define cell 
life-to-death balance. However, other cell death regula-
tors, including p53, are involved and often provoke una-
voidable cell death [200, 201]. A complex relationship 
between p53 and ceramide has been described, accentu-
ating the importance of ceramide accumulation during 
activation of stress responses and DNA damage [202]. 
Notably, ceramide and p53 can trigger signaling effec-
tors upstream or downstream of each other, resulting 
in sometimes contradictory effects described elsewhere 
[200, 201].

The SphK/S1P/S1PRs axis is a powerful molecular 
tool for the regulation of cell survival. The ability of S1P 
to protect against apoptosis has been well documented 
in many normal and malignant cell types exposed to 
pro-apoptotic stimuli, such as TNF-α/Fas ligands [71, 
75, 156], serum deprivation [203], ionizing radiation 
[204], and anticancer drugs [21, 54, 119, 157]. Inhibition 
of S1P signaling was shown to enhance apoptosis. For 
instance, treatment of HCC-38 and MDA-MB-468 cells 
with SphK1 inhibitor PF543 and doxorubicin resulted 
in synergistic apoptosis-enhancing effects [205]. Dur-
ing carcinogenesis, the SphK/S1Ps axis is highjacked by 
cancer cells to promote survival. Its role in the develop-
ment of cancer drug resistance was extensively reviewed 
and is associated with transactivation of growth-factor 
networks, stem cells, and other molecular adaptations 
[21, 54]. Mechanisms of SphK/S1PR involvement in the 
regulation of TNF-α-induced cell death are complex 
and sometimes controversial. Sphingolipids trigger sig-
nal transduction branching at several different points of 
the network. There is a possibility that cancer-induced 
transformation of SphK/S1PRs signaling is responsible 
for the development of TNF/TRAIL resistance in can-
cers, although the hypothesis remains untested. Several 
interactive hotspots (molecular effectors and networks) 
between DRs and SphK/S1PR networks are discussed 
below.

Regulation of inflammation by the SphK/S1P/S1PRs axis
Inflammation is recognized as one of the contributing 
and promoting factors of carcinogenesis. The SphK1/
S1P axis is part of a large signaling network formed by 
key pro-inflammatory cytokines, such as TNF-α [58, 

72, 156], IL-6 [206], IL-1β [81, 207], CCL5 chemokine 
(regulated on activation, normal T cell expressed and 
secreted (RANTES)) [128], and others [54, 208]. Bac-
terial lipopolysaccharide (LPS) was shown to induce 
SphK/S1P/S1PR3 activation [209], accentuating the 
potential involvement of sphingolipids during antibac-
terial responses. The activation of the sphingolipid axis 
was accompanied by induction of major genes responsi-
ble for the propagation of inflammation (COX-2, IL-1β, 
IL-6, TNF-α, iNOS) [206, 209]. The effect is mediated 
by a two-way signal-propagating process. Inflamma-
tory responses mediated by COX-2 also required acti-
vation of the SphK1/S1PRs axis during progression and 
resolution of infection [13, 207]. Accordingly, inhibi-
tion of S1PR3 by TY52156 resulted in the inhibition of 
pro-inflammatory gene signaling [209]. Pharmacologi-
cal SphK1 inhibition (or genetic silencing) also helped 
to recover the metabolic characteristics of T cells and 
induced immune antitumor activity [210]. Sphk1 inhi-
bition may improve immunotherapies and stimulate 
responses to anti-PD-1 and other immune checkpoint 
inhibitors (ICIs) [211].

Inflammation is a normal immune response by an 
organism facing infection. Various normal cells may be 
affected by inflammation and respond to stimulation 
by cytokines. Sphingolipids are important mediators of 
normal inflammatory responses in non-malignant cells. 
Crosstalk between the Fas network and endogenous 
sphingolipids was observed in various normal cells dur-
ing pro-inflammatory processes, including osteoclasts 
from mice with rheumatoid arthritis (RA). Increased 
level of S1P was associated with osteoclast apopto-
sis during the development of RA [212]. Furthermore, 
COX-2, iNOS, prostaglandin E2 (PGE2), IL-1β, and 
TNF-α signaling pathways activated the S1P network in 
macrophages during LPS-induced inflammation [75, 93, 
208]. S1P mediates various immune responses, including 
mast cell degranulation, migration of neutrophils, and 
maturation of lymphocytes [213]. Interestingly, an anti-
inflammatory role of SphK1/S1P was also observed [214]. 
For instance, activation of S1PR2 prevented excessive 
macrophage recruitment in a peritonitis model in  vivo 
[215], although the effect is macrophage type- and/
or pathology-specific [216]. Levels of IL-1β and IL-18 
in plasma of wild-type mice were reduced by applica-
tion of JTE-013 (S1PR2 antagonist) [216]. In SphK1-null 
mice (SphK1−/−), SphK1 was found responsible for sup-
pression of LPS-induced neutrophil oxidant production. 
Binding of SphK1 to JNK resulted in stabilization of JNK 
and inhibition of JNK binding to the JNK-interacting 
protein 3 (JIP3). The change of “partners” prevented the 
activation of nicotinamide adenine dinucleotide phos-
phate hydrogen (NADPH) oxidase and NF-κB activation, 
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indicating a novel mechanism of anti-inflammatory sign-
aling via SphK1/JNK interactions [217].

SphK1/2 is involved in the regulation of inflammation 
in other non-cancerous tissues, though its role is not 
straightforward. In an in  vivo study of arthritis, down-
regulation of SphK1 decreased inflammation, while total 
knockdown of SphK2 resulted in a heightened inflam-
matory response [99]. Similar diversity of the effects of 
SphK1/2 knockdown was observed during induction 
of inflammation in the colon [23, 102]. In intestinal epi-
thelial cells, SphK1 was involved in TNF-α/COX-2 pro-
inflammatory signaling during exposure to myristate 
[151]. In neuronal tissue, acetylation of COX-2 via non-
specific acetyltransferase activity was also linked to 
SphK1 activities [218]. Interestingly, triggering of the 
S1P network resulted in anti-inflammatory effects and 
suppression of IFN and STAT1 functions [205]. STAT1, 
a pro-apoptotic effector, controls expression of several 
cell cycle regulators, enhances death-promoting func-
tions of Bak, and blocks transcription of anti-apoptotic 

Bcl-2 and Bcl-xL [219]. STAT1 may also induce expres-
sion of DR ligands, such as TNF-α, FAS, and TRAIL 
[45]. Conclusively, limited S1P production via SphK1 
knockdown/inhibition may provide an effective tool for 
a re-activation of the STAT1/IFN pathway [220]. The 
role of SphK2 in this process remains controversial and 
should be clarified in future studies. There are reports 
which indicated contribution of SphK2 in the activa-
tion of pro-inflammatory processes [221], which can be 
(potentially) employed to facilitate anticancer therapies. 
It is essential to keep in mind the multifactorial role of 
S1P and provide only cell-targeted reduction of S1P lev-
els and tissue-specific inhibition of SphK1/2 inhibition, 
as it would be counterproductive to eliminate the effect 
of sphingolipids on lymphocyte trafficking [54, 193] and 
anticancer activation. Considering the regulatory role of 
sphingolipids in T cells, the impact of the SphK/S1P axis 
should be considered during cancer progression (Fig. 6). 
The activation of Sphk1/S1PR may significantly change 
the ability of T cells to recognize and eliminate cancer 

Fig. 6 Dichotomy of TNF-α–induced signaling in cancers is hypothetically linked to sphingolipid balance where the relative amounts of ceramide 
and S1P cause cell proliferation, survival, or death. Stressed cells can increase ceramide in response to TNF-α, resulting in growth arrest 
and apoptosis. However, in some cells TNF-α can activate SphK and mitigate its pro-apoptotic ability via production of growth-stimulating S1P 
and activation of S1PR1-5. Abbreviations: CerS, ceramidase; GPCR, G-protein coupled receptor; HDAC1/2, histone deacetylase 1 and 2; hTERT, 
human telomerase reverse transcriptase gene; JNK, c-Jun NH2-terminal kinase; PPARγ, peroxisome proliferator-activated receptor-γ; SMase, 
sphingomyelinase
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cells (immunosuppressive effects). To make cancer cells 
susceptible to T cell recognition/killing, application of 
nanocarriers and epigenetic reprogramming of malignant 
cells was suggested as a promising therapeutic approach 
in this field [222, 223].

Role sphingolipids in the regulation of lipid metabolism 
and obesity‑associated inflammation
Obesity is regarded as a powerful contributor in the 
development of cardiovascular diseases and cancer [224, 
225]. For instance, obesity-driven inflammation was 
linked to colorectal cancer progression and metastasis 
[225]. Low levels of inflammation were found to mark 
increased fat deposition [226]. Inflammation is promoted 
in fat tissue by several mechanisms, including imbalanced 
metabolism, activation of pro-inflammatory immune 
cells, secretion of cytokines, and other immune media-
tors [227, 228]. Macrophages and neutrophils located in 
adipose tissue were shown to secrete pro-inflammatory 
cytokines (such as IL-1, IL-6, IL-8, C-reactive protein 
(CRP), TNF-α) [229]  (Fig.  3). Accumulation of mac-
rophages in fat tissue and increased secretion of adi-
pokines (fat hormones) were linked to the activation of 
several signal transduction pathways (JAK/STAT, MAPK, 
PI3K, mTOR, and 5’AMPK signaling pathways), COX-2 
downregulation, and dysregulation of mRNA expression 
[230]. Excessive saturated fatty acids (SFAs), which are 
generated in adipose tissues, induce pro-inflammatory 
signaling in many cell types, including adipose tissue 
macrophages. SFA deposition also results in enhanced 
expression of cytokines, such as TNF-α and IL-6 [231]. 
Interestingly, obesity-related inflammation may trigger 
carcinogenesis, promote metastasis, and promote cancer 
immune evasion [229].

The primary function of fat-regulating agents, or adi-
pokines, is to control fat deposition and utilization [232]. 
Adipokine leptin can suppress appetite by acting upon 
several mediating effectors, including leptin recep-
tor (LEPR) in neurons [233–235]. Surprisingly, cancer 
cells are also responsive to leptin and express adipokine 
receptors. Adipokines may activate pro-carcinogenic and 
metastasis-promoting effects [14, 233]. LEPR belongs to 
class 1 of the cytokine receptor family and is reported 
to play significant roles in carcinogenesis [236]. It has 
been shown that leptin induces expression of SphK1 in 
breast cancer [237]. In another study, leptin-activated 
SphK1 was demonstrated to trigger IL-6 secretion which 
maintained low levels of inflammation in the effected 
tissues [237]. Alternatively, SphK1 deficiency and phar-
macological inhibition were associated with adipogen-
esis, increased expression of regulatory genes associated 
with adiposity, and production of anti-inflammatory 
molecules IL-10 and adiponectin. Inhibition of SphK1 

resulted in lower recruitment of macrophages and 
reduced production of TNF-α and IL-6 in adipose tissues 
[238]. However, sphingolipid regulation of adipose tissue 
metabolism remains controversial [237, 238].

Interactions between the adipokine network and sphin-
golipids are delicately balanced by a feedback mecha-
nism of signaling. The role of sphingolipid metabolizing 
enzymes in adipose tissue has been assessed in several 
recent studies [151, 239]. SFAs were reported to serve 
as substrates for ceramide synthases (CerS) and serine 
palmitoyl transferases (SPT). Both CerS and SPT can 
modify sphingolipid metabolism [151]. Accordingly, the 
level of pro-apoptotic ceramide was increased by SFAs 
(and high fat diet). Moreover, enhanced levels of sphin-
gosine and S1P were found in the blood plasma, liver, and 
skeletal muscle of rodents following SFA (high fat diet) 
administration in vivo [237, 239]. In another study utiliz-
ing rats, increased expression of SphK2 (but not SphK1) 
was observed during consumption of fat [240]. However, 
these studies did not assess the level of pro-inflammatory 
signaling in those animals, and, therefore, it remains 
unclear whether these changes led to the propagation of 
inflammation or just aimed to minimize fat deposition.

The cancer-regulating role of CerS, the dual mediator 
of adipose tissue effects and sphingolipid metabolizing 
enzyme, is especially intriguing considering recent find-
ings in breast adenocarcinoma cells. High level of CerS6 
decreased phosphorylation of Akt and ERK in MCF-7 
breast cancer cells. This effect was associated with inhi-
bition of MCF-7 cell proliferation and activation of the 
mTOR pathway [241]. The study also analyzed public 
data using the Cancer Genome Atlas database. Investi-
gators determined the presence of invasive breast car-
cinoma is negatively associated with CerS6/S1PR2 or 
CerS6/SphK1 expression. This study suggested that 
mTOR activity depends on the balance between the pro-
duction of S1P (by SphK1) and C16-ceramide (by CerS6) 
[241]. However, it was not tested whether adipose tissue 
metabolism or adipokines are involved in the regulation 
of CerS6 and mTOR signaling in breast cancer tissues. 
The association of these effectors with inflammation and 
resistance to immunoediting was also not assessed.

A recent study utilized a mice model to show a 
myristate-enriched milk fat-based diet (MFBD) increased 
the expression of TNF-α in colonic tissues [151]. MFBD 
also elevated S1P levels in intestinal epithelium via reg-
ulation of SphK1 and JNK [151]. Thus, this data estab-
lished a link between fat-based diet, activation of SphK1, 
and increased production of TNF-α (inflammation) 
in the colon. Further efforts are required to determine 
whether this condition may potentially result in the inac-
tivation of the anticancer capacity of the TNF network 
and lead to apoptosis resistance.
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Since TNF-α can activate the SphK1/S1Ps receptor axis 
(and vice versa), it is tempting to hypothesize that this 
mechanism provides a circuit point which may be essen-
tial for internal outcomes of the cell/tissue responses to 
pro-inflammatory signals. Depending on the existing 
balance within the sphingolipid network of cancer cells/
tissue, the activation of TNF-α/TNFR axis may result 
in either activation of proliferation (so-called TNF-α 
resistance mechanism) or apoptosis (traditional death-
promoting pathway). The relevant question to ask, what 
is the 3rd factor(s) that tips the scale of metabolism 
towards one or another biological process? Considering 
the role of obesity as a contributing factor in carcino-
genesis, adipokines can serve as important contributing 
factors which may link obesity to advanced cancers and 
drug resistance. However, high cancer cell heterogeneity 
(genetic/inherited factors) and the impact of established 
anti-apoptotic effectors (proteomics and epigenetics) 
must not be overlooked as powerful contributors.

The role of sphingolipids in the interaction 
between ubiquitin‑editing enzyme A20 and pro‑apoptotic 
TNF‑α signaling
Diverse A20 functions have been linked to dual deubiqui-
tylating enzyme (DUB) and E3-ubiquiting ligase actions 
[242]. A20 is encoded by TNF-α-induced protein 3 
(TNFAIP3) gene, a critical anti-inflammatory effector in 
the TNF network [243]. Anti-apoptotic and cancer stem-
cell (CSC) promoting effects of A20 were reported [244]. 
A20 was defined as an anti-apoptotic and anti-inflam-
matory effector [245], although A20’s role in the regula-
tion of cancer immune evasion remains largely unclear. 
For instance, liver regeneration was associated with A20 
activities that promoted IL-6/STAT3 pro-inflammatory 
signaling and suppressor of cytokine signaling 3 (SOCS3) 
proteolysis [246].

Overexpression of A20 was detected in multiple 
solid tumors [244], including basal breast cancers with 
advanced metastatic properties and EMT phenotype [49, 
247]. Increased A20 expression in triple-negative breast 
cancers (TNBC) protected from TNF-α-induced cyto-
toxic cell death [247]. Lee and co-authors [247] dem-
onstrated that TNF-α induced association of A20 with 
HSP70, the protein involved in proteolytic removal of 
damaged and/or incorrectly folded proteins. The formed 
complex demonstrated increased stability and facilitated 
resistance to apoptosis in TNBCs, although the effect 
was not observed in estrogen receptor positive (ER+) 
luminal cell lines. The failure of TNF-α to trigger A20/
HSP70 association in ER+ cells suggested a role for ER in 
this signaling network [247]. Notably, ER-linked signaling 
was shown to trigger the SphK1/S1PR axis in ER+ cells 
(such as MCF-7 cells) [167], while TNF-α was shown to 

induce apoptosis [153]. Complex and controversial inter-
actions between A20 and estrogen/ER networks were 
observed [248]. The reported data suggested a potential 
mutual association between all four effectors (TNF-α, 
sphingolipids, estrogen, and A20), which remains to be 
assessed.

A20 was shown to interact with sphingolipid signaling 
and mediate resistance to Fas/FasL-dependent apoptosis 
[249]. A recent study indicated that δ-tocotrienol (δTE, 
a vitamin E form) can stimulate the expression of A20 
and inhibit TNF-α-induced activation of NF-κB and LPS-
stimulated IL-6 in a concentration- and time-dependent 
manner in RAW264.7 macrophages [249]. These findings 
were validated in A20 knockout cells. Treatment with 
δTE induced generation of dihydroceramides, marked 
by the activation of cellular stress. Supporting the role 
of sphingolipid metabolism in A20-dependent effects, 
myriocin (an inhibitor of de novo sphingolipids synthe-
sis) partially inhibited induction of A20 and A20-induced 
inhibition of NF-κB by δTE in immune cells [249]. How-
ever, this pathway was not tested in cancer cells. More-
over, pro-apoptotic and growth-inhibitory effects of 
TNF-α were not always associated with the induction of 
classical NF-κB signaling [250], indicating roles of other 
genomic and non-genomic mechanisms. A20 was also 
found to be involved in the regulation of autophagy in T 
cells [251, 252]. However, less-differentiated (immature) 
T cells are resistant to TNF-α-induced apoptosis [253]. 
Considering that T cells express S1PR and are respon-
sive to S1P stimulation [193], it remains to be determined 
whether the A20/autophagy/sphingolipids signaling 
mechanism is active in TNF-α-resistant cancer cells and 
the TME. Supporting the importance of this investiga-
tion, sphingolipids were also found to be involved in the 
regulation of autophagy in different cell types [147, 199].

NK signaling, TME, and sphingolipids
Human NK cells are a crucial part of the innate immune 
system responsible for the identification of self/non-self-
CD1d (dendritic cells)-presented glycosphingolipids and 
cytokine-elaborating response [254]. NK cells are cyto-
toxic towards tumors and demonstrate anti-metastatic 
properties. Therefore, mutual interactions between TME 
and NK cells are complex and represent a promising 
therapeutic avenue for drug development [255]. Tumor 
cells develop characteristics which allow them to circum-
vent NK cells, and escape NK-based cytotoxicity. The 
process is facilitated by chronic stress (hypoxia or ROS) 
which forces the TME and NK cells to adjust their anti-
tumor functions [256]. The modified TME is immuno-
suppressive and limits NK cell activity, thus, stimulating 
tumor progression and spread. NK-mediated resistance 
was correlated to mutations in DRs/TRAILRs [257]. 



Page 22 of 40Sukocheva et al. Cell Communication and Signaling          (2024) 22:251 

Anti-apoptotic sphingolipids may contribute this process 
via their interactions with TNF signaling.

The list of major regulators of TME/NK responses and 
biological activities includes the TNF network (Fig.7). For 
instance, TRAF2 was shown to regulate NK responses 
[258]. TRAF2 is an adapter protein with E3 ligase prop-
erties which binds and activates various signaling mol-
ecules, such as membrane-bound receptors, kinases, 
and phosphatases [242]. TRAF2 can engage E3 ligases, 
including cIAP1/IAP2, and enable ubiquitination of 
Complex I components [259]. TRAF2 can be recruited 
to most proteins in the TNF receptor superfamily and 
transmits signals to the IKK complex and further to the 
NF-κB pathway [259]. Recent investigation defined the 
key role of the cold shock protein Y-box binding pro-
tein-1 (YB-1) in the regulation of pro-survival NF-κB 
p65 signaling by TNF-α via TRAF2. Higher expression of 
YB-1 was associated with adenocarcinoma invasiveness 
and expression of CerS6, which regulates cell migration 
[260]. However, the lower expression of CerS6 was found 
responsible for enhanced inflammation in a mouse coli-
tis model [261], indicating a diverse role of sphingolipid 

metabolizing enzymes in the progression of pre-cancer-
ous (pro-inflammatory) and cancerous conditions. As 
a mediator of TNF-α signaling, TRAF2 has been con-
sidered as a potential therapeutic target in cancers. For 
instance, regulatory T cell (Treg) signaling was targeted 
by immunotherapeutic approaches which also inhibit 
TRAF2 [262]. The TNFR2/TRAF2 axis is responsible 
for co-stimulation of CD8+ T cells, which sensitize can-
cer cells to cytotoxic effects [41]. TNF-α, was shown to 
activate Tregs via TNFR2, thus promoting Treg expan-
sion and potential anticancer immunity [11]. However, 
the role of TNFR2 remains controversial, as both TNFR2 
antagonists and agonists have demonstrated anticancer 
effects [263].

S1P was demonstrated to bind to TRAF2 as a cofac-
tor, changing its E3 ligase biological activity [67, 264]. 
Blockade of the SphK1/S1P axis resulted in recovery 
of death-related effects provoked by DR5 knockdown 
[264]. Generation of S1P was found to be an essential 
step for TRAF2 polyubiquitination (stabilization), and 
subsequent promotion of cell invasion [264]. Therefore, 
TRAF2 is a putative SphK/S1P target during the cancer 

Fig. 7 The conceptual model for the regulation of immune T cell responses by the SphK/S1P/S1PR axis during cancer progression. Sphingolipids 
were shown to impact cancer cell recognition and killing by immune cells at different levels. Abbreviations: PD-1, programmed death-1; PD-L1, 
programmed death-1 (PD-1) ligand 1; ROS, reactive oxygen species; S1P, sphingosine-1-phosphate; S1P1/S1P3, sphingosine-1-phosphate receptor 1 
and 3; SphK, sphingosine kinase; WNT, wingless-related integration site
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immune evasion. Binding of S1P to TRAF2, suggestively 
independent of S1PRs, was associated with activation of 
ERK1/2 and pro-metastatic cell behavior [264], although 
this conclusion may require further analysis. Many stud-
ies indicated regulation of cell migration by S1P receptors 
[21, 185]. For instance, S1P receptor 1 (S1P1) transmits 
S1P effects in various immune cells and regulates egress 
of lymphocytes into the circulation from the spleen and 
lymph nodes (LNs) [265]. The binding of S1P (or S1P 
receptor modulators/ligands) to S1P receptors leads to 
the receptor internalization and, thus, decreased pres-
ence of the receptors on plasma membrane and potential 
unresponsiveness to future stimulation. The internaliza-
tion and degradation of S1P receptors may lead to the 
utilization of intracellular S1P too, which is translated 
into reduced lymphocyte egress, less circulating lym-
phocytes, and inhibition of inflammation-linked tissue 
damage [193]. Accordingly, administration of S1P mod-
ulators, such as fingolimod, provoked T cell-targeting 
immunomodulatory effect indicated by fast decline of 
the number of blood-circulating T cells [266]. S1P1 also 
regulates migration of osteoclast precursor cells via Fas/
Rac1/NF-κB [219].

Sphingolipid signaling was linked to TME modifica-
tions and resistance of cancer cells to NK cell-based 
elimination [267]. For instance, S1P-stimulated lung 
cancer-derived monocytes secreted TNF-α and IL-6 in 
S1P receptor 3 (S1P3)/mTOR/K-Ras-dependent man-
ner, while NF-κB was not implicated [268]. The authors 
suggested that greater presence of S1P within the TME 
of lung cancer may orchestrate tumorigenic immune 
responses [268]. However, this statement requires experi-
mental confirmation, as the exact mechanisms (specific 
S1P targets) of this effect remain unclear and/or contro-
versial [269, 270]. Furthermore, in non-Hodgkin’s lym-
phoma, SphK1 silencing resulted in activation of NKs, 
associated with increased secretion of IL-2 and IFN-γ, 
which are downstream of the classical NF-κB path-
way [271]. Among S1P targets in immune cells, S1P4 
(expressed by majority of immune cells) was indicated 
as a major effector of sphingolipid-dependent effects in 
innate immunity and lymphocyte trafficking [272, 273]. 
Therefore, S1P4 signaling could be another potential tar-
get to prevent cancer immune evasion. Chemokine CCL2 
production by resident macrophages was regulated by 
S1P4 and synergized with Toll-like receptor (TLR) sign-
aling, indicating sphingolipid receptor involvement in 
innate immunity responses [274]. Another sphingolipid 
metabolizing enzyme, S1P lyase, was found to be respon-
sible for suppressing tumorigenicity within the TME 
[275]. S1P lyase was purported to be a death-promoting 
enzyme which eliminates S1P and its survival promoting 
effects [276].

Several independent research groups reported that S1P 
generation/S1P receptor expression profile stimulates 
migration of macrophages [277, 278]. Migration toward 
S1P was found to be mediated by expression of S1P1/
S1P3, while expression of S1P2 decreased migration 
[278]. Interestingly, SphK2 was defined as an anti-inflam-
matory protein in human macrophages [279], although 
the role of SphK2 in inflammation remains controversial 
[221, 280]. Despite a growing number of relevant publica-
tions, the physiological roles of secreted and/or intracel-
lularly generated S1P and S1P receptor (subtype-specific) 
expression in the regulation of macrophage/NK cell 
migration and activity remain largely unclear. However, 
the reported S1P-induced activation of human/rodent 
macrophages by apoptotic cells in an S1P1-dependent 
manner [278] opens a perspective to use sphingolipids as 
regulators of chemoattraction in TMEs and potentially 
increase effectiveness of NK cells. Accordingly, novel S1P 
receptor modulators and inhibitors require serious test-
ing in vivo [281].

Decreased cytotoxicity of NK cells was associated 
with changes in chemoattraction and migration of mye-
loid-derived suppressor (MDS) cells towards tumor tis-
sues [282]. MDS [283], Treg cells, and tumor-associated 
macrophages (TAMs) are common components of the 
TME, which can release immunosuppressive cytokines 
(such as TGFβ) and decrease NK cell-induced apopto-
sis [284]. In normal tissues, macrophages produce large 
amounts of TNF-α to clear bacterial and viral infections 
[285]. However, TAMs are unable to recognize cancer as 
a tissue destined for clearance, suggesting that the TNF 
signaling axis is reprogrammed in TAMs. Moreover, low 
endogenous concentrations of TNF-α derived from mac-
rophages were found to promote metastasis via diverse 
downstream pro-survival mechanisms [48]. Therefore, 
TAMs represent a distinct phenotype of macrophages, 
making them a target for anticancer therapy. Further 
research is required to define which players within the 
TNF-α network may be responsible for the cancer-tol-
erating transformation of TAMs (often defined as de-
differentiation) [286] and whether sphingolipids can be 
targeted in TAMs.

S1P1 and S1P3 represent other promising targets to 
dimmish cancer immune evasion. S1P1 receptor pro-
moted Treg infiltration and tumor driven Treg expan-
sion in bladder cancer [287]. S1P3 was shown to play a 
role in modulating the effects of TGFβ in cancer stem 
cells [288]. These effects were mediated by SphK1 and 
increased levels of S1P. Similar activation of SphK1 by 
TGFβ signaling was recently reported in A549 cells 
[289]. Other anti-apoptotic TME conditions contributed 
to the blunted immune response and cancer progres-
sion. For instance, hypoxia in the TME helps to reduce 
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levels of pro-apoptotic Bax [290] and enhances levels of 
pro-survival proteins cIAP2 and Mcl-1 [291]. SphK/S1P 
receptors were shown to be involved in the regulation of 
this process. SphK2 promoted leukemia cell survival via 
Mcl-1 [292]. Mcl-1 upregulation was also mediated by 
S1P1 in mammary cancer cells [293]. Alternatively, fin-
golimod, an S1P receptor modulator, acted synergisti-
cally with TRAIL-induced apoptosis and downregulated 
Mcl-1 in various human cancer cells [294]. ONO-4641 
(another S1P receptor modulator) stimulated the growth 
of CD11b + Gr-1 + (MDS) cells, decreased T cell prolif-
eration, and lowered INF-γ secretion by CD3+ T cells 
(with similar characteristics to MDS cells) in the lungs 
of naïve mice, resulting in the lymphocytopenia [295]. 
In this mouse model of emphysema, the effect of ONO-
4641 was desired [295], although to improve breast can-
cer immunotherapy depletion of MDS cells should be 
achieved [288].

The TME also contains non-immune cells (stroma) that 
promote downregulation of NK cell-mediated effects. 
Cancer associated fibroblasts (CAFs) are the major com-
ponent of stroma [288] and confer documented inhibi-
tory effects on NK-cytotoxicity [296, 297]. CAFs were 
shown to trigger NK cell exhaustion [298, 299] and 
secrete a range of immunosuppressive cytokines, includ-
ing IL-10 [300], TGFβ [284], PGE2 [301], and indoleam-
ine 2,3-dioxygenase (IDO) [302]. SphK2 was found to 
regulate CAF activation via interactions within the p53 
network and facilitate the development of cancer toler-
ance of the TME [303]. Mesenchymal stem cells, which 
were also observed in stroma, can secrete PGE2/IDO 
and silence NK cell antitumor effects [301, 304]. S1P1 
interaction with IL-22 receptor signaling was found to be 
involved in the promotion of metastasis to bone by mes-
enchymal stem cells [305]. Hypoxic conditions are linked 
to metastasis, inhibition of cancer growth in the initial 
phase, but promotion of cancer spreading at the later 
stages. The effects of hypoxia on the TNF-α signaling axis 
and its association with sphingolipid network are contro-
versial and require further investigations [123, 306].

The controversy relies on the findings that hypoxia can 
enhance both secretion of pro-inflammatory cytokines 
(pro-apoptotic effect) and anti-apoptotic hypoxia-induc-
ible factor-1α (HIF-1α) [307]. Hypoxia was also shown 
to promote resistance of cancer cells to NK cell cyto-
toxicity [157]. However, there are many network fac-
tors involved in the regulation of this process, including 
expression of HSP90 isoforms [307]. Hypoxia was shown 
to stimulate S1P generation in HepG2 cells [308] and in 
ovarian cancer cells [309]. In turn, sphingolipids may 
regulate hypoxia-related events at different levels. S1P/
S1P1, as downstream effectors, mediated HIF-1α sign-
aling during wound healing [212]. Downregulation of 

SphK1 expression reversed hypoxia-induced cell resist-
ance to NK cell killing via blockade of the S1P/HIF-1α 
signaling arch [157]. Therefore, silencing or inhibition of 
SphK1 may be employed to strengthen NK effects. S1P 
signaling, as an upstream effector, also activated HIF-1α/
HSP70 in normal rat pulmonary and cerebral cells [310]. 
Conclusively, HIF-1α activation by S1P was observed in 
various cells [311], thus, confirming the hindering effect 
of S1P in anti-cancer imunity.

The S1P/S1P1-3 axis was found to be involved in the 
regulation of glucose metabolism in mouse embryonic 
fibroblasts (S1P lyase knockdown model) via HIF-1α 
[312]. The S1P2 receptor was reported to be involved in 
preconditioning of macrophages towards a cancer-hos-
pitable type in the TME [313]. Under hypoxia, a novel 
sphingosine metabolite O-cyclic phytosphingosine-
1-phosphate suppressed mitochondrial dysfunction and 
apoptosis in mesenchymal stem cells via induction of 
HIF-1α signaling and calcium-dependent PKCα/ mTOR 
signaling pathway [247]. S1P modulator fingolimod 
inhibited HIF-1 and HIF-2 intratumoral levels and sen-
sitized cancer cells to chemotherapy in  vivo [314]. The 
crucial importance of HIF-1 in macrophages is associ-
ated with hypoxia-dependent regulation of macrophage 
interaction with cancer cells and angiogenic potential 
(interaction with endothelial tissues). Accordingly, strat-
egies to prime macrophages towards anticancer toxicity, 
attract cytotoxic lymphocytes, and prevent angiogenesis/
metastasis using specific inhibitors/modulators of sphin-
golipid axis (before or together with immune checkpoint 
inhibitors) could be beneficial.

Cyclooxygenase‑2 (COX‑2) and sphingolipids crosstalk
COX-2 is a key enzyme responsible for the production of 
PGE2, a multifunctional mediator of inflammation, and 
has been implicated in both inflammation and carcino-
genesis. Crosstalk between COX-2 signaling and activa-
tion of the PI3K/Akt network has been established. It 
has been found that the COX-2/PGE2 axis can promote 
cancer cells survival via PI3K/Akt signaling [315] and 
Ras-MAPK cascades [316, 317]. Selective nonsteroidal 
anti-inflammatory drugs (NSAIDs) (such as celecoxib, 
valdecoxib, and rofecoxib) are widely used to control 
inflammation and cytokine production [318]. COX-2 
is the most studied target of aspirin (the common anti-
inflammatory agent), which has also demonstrated 
anticancer properties [319]. Different COX-2 inhibi-
tors have been suggested as anticancer treatments [317, 
320]. Selective COX-2 inhibitors NS-398 and nimesulide 
have been demonstrated to increase TNF-α sensitivity of 
TNF-α-resistant HeLa H21 cells [320]. Although nime-
sulide augmented TNF-α (CD95 or TRAIL receptors)-
induced apoptosis, the interaction of TNF-α and COX-2 
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signaling pathway was not linked to the enzymatic activ-
ity of COX-2 [320], and so further analysis is required.

SphK/S1P axis may be involved in COX-2-mediated 
inflammation via orchestrated interactions with the 
TNF-α signaling pathway. The S1P receptor-based pro-
cess seems to rely on both direct COX-2 activation and 
feedback mechanisms, as TNF-α and other cytokines 
can trigger SphK1, representing a loop of inflammation-
enhancing interactions [213]. S1P-dependent activation 
of COX-2 was observed in a remarkable variety of nor-
mal and malignant cells and tissues, including endothelial 
[321], and various cancer cells [214, 322]. The SphK1/S1P 
receptor network also controls PGE2-mediated effects in 
various cells [81, 323, 324]. Notably, an aspirinyl-conju-
gated SphK inhibitor (SKI-I-Asp) containing aspirin to 
bolster oral bioavailability was generated and tested as a 
promising anticancer drug [325].

S1P effects on COX-2 expression and activity are medi-
ated by its receptors. For instance, S1P stimulated expres-
sion of COX-2 and PGE2 production via S1P1 or S1P3 
in human granulosa cells [326]. S1P3 antagonist blocked 
the LPS-dependent induction of COX-2 gene expression 
[209]. S1P2 mediated inflammation-related effects of S1P 
in renal cells. However, other enzymes were reported to 
mediate sphingolipid-induced activation of PGE2 syn-
thesis. SphK1 knockdown decreased cytokine-induced 
PGE2 production via inhibition of microsomal PGE syn-
thase-1 [322]. It is unclear whether DR expression/sign-
aling is being altered during these effects. In conclusion, 
tripartite interactions between TNF-α/COX-2/sphin-
golipid network warrants future investigations.

DRs cross talk with PKC, STAT1, and SphK1/S1P3
Akt is a serine/threonine kinase which can be activated 
downstream of PI3K to provide a critical defense against 
apoptosis [327]. Activated Akt/PI3K can phosphoryl-
ate many mediators of DR signaling, including caspase-3 
and caspase-9, Bad, MDM2, and different transcrip-
tion factors [293, 328, 329]. In TNF-α-treated breast 
cancer cells, PKCε mediated anti-apoptotic effects via 
direct association with Akt [330–332]. Aside from anti-
apoptotic ERK1/2 [98], the PKC/Akt axis also mediates 
sphingolipid effects [333]. For instance, PKC was found 
to be involved in S1P-mediated calcium fluxes and induc-
tion of insulin secretion in pancreatic β cells [334]. PKC 
has been reported to mediate the activation of endothe-
lial cell migration and signaling [189, 335], and survival 
of malignant cells [336]. Akt activation by S1P, which 
mediated resistance to ischemia/reperfusion injury, was 
also reported in endothelial cells and cardiac myocytes 
[188, 337]. S1P3 was found to be involved in stabiliza-
tion of Akt mRNA and stimulated Akt protein expression 
[338]. PKC/Akt may mediate poor response to immune 

checkpoint blockade therapy [339], and, thus, inhibition 
S1P axis may be beneficial in less responsive patients 
[340]. Interestingly, S1P2 was reported to mediate PKC 
inhibition [341].

Contrary to the S1P/S1P3 receptor network, cera-
mide and sphingosine may serve as negative regulators 
of PKC/PI3K/Akt signaling via several potential mecha-
nisms [342–344]. Binding of PKCζ to 14-3-3 scaffolding 
proteins was found to be disrupted by ceramide, lead-
ing to PKCζ recruitment to lipid rafts [344]. Ceramide 
can also regulate Akt translocation to the plasma mem-
brane and redirect (or block) its anti-apoptotic effects 
[343]. Ceramide-induced negative regulation of growth 
was marked by decreased ERK activity through PKCε-
dependent effects [342]. PKCε was blocked by ceramide 
which prevented PKCε binding to Raf-1 and ERK in cells 
treated with insulin-like growth factor [342].

The PKC/Akt axis is a key regulator of autophagy 
[345] which can be activated by C2-ceramide in cancer 
cells [346–348]. SphK1 was also found to be activated in 
starved cells [349]. However, the role of SphK1 and S1P 
in the regulation of autophagy remains controversial and 
may be independent of Akt signaling [350]. Moreover, 
SphK1 activation during starvation may be a result of 
inducible cytoprotective mechanisms. This suggestion is 
supported by a study which indicated that SphK1 down-
regulation by siRNA enhanced starved cell death [350]. 
The involvement of the sphingolipid axis in the TNF/
TRAIL-induced cell death may be also more complex 
than it was originally anticipated. However, the role of 
SphK/S1P axis in the regulation of autophagy in immune 
cells warrants further investigation, considering that 
autophagy is a promising target to overcome resistance to 
immunotherapy [351].

Stimulation of proliferation and anti-apoptotic effects 
of PKCε were mediated by a network which includes 
not only ERK1/2 and PI3K/Akt, but also STAT1, STAT3, 
and NF-κB pathways [352]. The potential role of puta-
tive STAT1 sites in the regulation of PKCε transcriptional 
activities was tested in MCF-7 cells [353]. The study 
demonstrated involvement of STAT1 and Sp1 in the 
upregulation of PKCε in MCF-7 cells in vitro [353]. The 
interaction is also a two-way mechanism, as inhibition of 
classical PKC isoenzymes resulted in downregulation of 
STAT1 in macrophages [354]. STAT1 was shown to regu-
late mammary tumorigenesis via multiple effectors [45, 
219, 300]. SphK1 was reported to suppress activation of 
STAT1 in both parental and breast CSC cultures [220]. 
Another recent study indicated that STAT1 may bind the 
promoter region of S1P1 receptor [355]. It remains to be 
discovered how the anti-apoptotic effects of Akt/PKC 
can be integrated with STAT1 and sphingolipid networks 
in cells resistant to TNF-α/TRAIL-induced apoptosis.
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Exploring the role of natural dietary 
and plant‑based compounds as regulators 
of inflammation and sphingolipid metabolism
Selective anti-inflammatory molecules, including natu-
ral plant compounds and dietary components, have been 
shown to impact activation of pro-apoptotic cytokine 
signaling, suggesting their potential as safe and effica-
cious options for drug-resistant tumors. For instance, 
sulforaphane (SFN), a dietary component of broccoli, is 
an effective antioxidant with anticancer and anti-inflam-
matory characteristics [356] that has been tested for its 
cancer chemo-preventive properties [357–359]. Cyto-
protective effects of SFN were associated with induction 
of the Nrf2 signaling pathway [357]. Alternatively, SFN-
induced downregulation of Nrf2 expression was linked 
to increased apoptosis and elevated ROS [360]. SFN 
reversed ceramide-mediated apoptosis [361] in mouse 
hepatocytes that resulted from a high-fat diet (HFD) via 
the Nrf2 pathway [361]. Involvement of the Nrf2 path-
way was also observed during application of siponi-
mod (BAF312), a selective modulator of S1P1 and S1P5 
receptors [362], supporting the existence of connections 
between Nrf2 and the sphingolipid signaling network. 
Siponemod demonstrated anti-inflammatory properties 
and microglia-protecting effects in the brain [363]. These 
effects provide insight into the regulation of S1P recep-
tor signaling during inflammation, although the immune 
re-activating effects of these agents remains to be tested.

Natural flavonoids can regulate redox-sensitive path-
ways and transcription factors (such as Nrf2 and NF-κB) 
associated with increased release of free radicals/ROS 
and chronic inflammation [358, 364]. Many natural com-
pounds were also found to target TNF-α/NF-κB and 
DR5 expression/pathway in cancer cells [365]. However, 
the effect of natural compounds on sphingolipid and 
TNF signaling networks during cancer immune evasion 
remains largely unclear. Only some of plant-derived and 
dietary compounds were tested and reported to influence 
sphingolipid metabolism and/or TNF network activity. 
One of the most studied agents, apigenin (4’,5,6-trihy-
droxyflavone), an anti-inflammatory compound isolated 
from parsley, oranges, and other plants, demonstrated 
strong anticancer properties via regulation of TNF-α, 
and DR4/DR5 pathways [35, 366, 367]. In conjunction 
with TNF-α, apigenin was shown to stimulate apopto-
sis and effectively decreased the survival of colon cancer 
cells [367]. In HepG2 cells, apigenin stimulated apopto-
sis via activation of pro-apoptotic TNF-α signaling [368]. 
Sensitization to Apo2L/TRAIL-induced apoptosis was 
also reported in prostate [369], HepG2 [370], Huh-7 
(HCC) [371], and lung cancer cells [372] treated with api-
genin. This dietary compound induces NF-κB activation 
[373]. Upregulation of TNF-α synthesis by apigenin was 

observed in J774.2 macrophages [374]. Notably, apigenin 
was also shown to inhibit SphK1/S1P axis in cardiac cells 
during endotoxemic shock [136]. However, in breast can-
cer cells, a dual effect of apigenin fostered some doubts 
about clinical application of this agent. Low doses of api-
genin stimulated cancer cell growth, while high doses 
activated apoptosis via the TNF-α pathway [375]. Con-
troversial findings were also reported in RAW264.7 mac-
rophages where apigenin inhibited the effects of TNF-α 
[376]. Accordingly, detailed investigation is warranted to 
confirm the anticancer and SphK1/S1P-inbiting effects of 
apigenin in resistant tumors.

Other promising anti-inflammatory and SphK1-inhib-
iting agents (phenols and polyphenols) capable of sensi-
tizing cancer cells to the pro-apoptotic effects of TNF-α 
(and/or stimulate pro-apoptotic effects of TRAIL/DR 
signaling) include the flavonoid epigallocatechin gallate 
(EGCG) [377] and the polyphenol resveratrol [378–380]. 
Protective effects of EGCG gavage were associated with 
increased levels of immune-enhancing substances. The 
agent also helped to balance regulation of the serum 
levels of sphingomyelin and sphingomyelin in the LPS-
induced acute injury models, leading to reduced effects 
of harmful substances and inflammation [381]. Resvera-
trol was shown to impact sphingolipid metabolism in 
lung adenocarcinoma cells and downregulate inflamma-
tion via SphK1 inhibition [101, 380]. Another flavonoid, 
quercetin, also demonstrated antioxidant properties and 
reduced the production of S1P in HepG2 cells [382]. 
However, further testing is required to determine the 
immunomodulatory effects of dietary compounds in 
patients with resistant cancers.

Future perspectives of TNF‑α/TRAIL therapy 
and clinical application of agents targeting 
the sphingolipid pathway
Major immunotherapies aim to increase the amount of 
tumor antigen-specific effector T cells in the circulation, 
block immunosuppressive effects of the TME [48], and 
stimulate cancer cell-targeted inflammation. The deci-
sion to initiate immunotherapy should be made on a per-
patient basis according to the expression of predictive 
biomarkers (“immune response” gene signature). Sev-
eral recent clinical trials have tested recombinant human 
TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) 
against TRAIL-R1 and TRAIL-R2 [2]. DRs/TNFR1 have 
been the target of monoclonal antibodies (mAbs) in 
clinical trials over the last decade with variable levels of 
success [47]. Recent trials indicate high mAb specificity, 
longer half-life, and fewer adverse effects compared to 
conventional treatment [383]. TNF-α-containing fusion 
proteins have been designed and show effective antican-
cer properties [384]. However, only gene therapy with 
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VB-111 (ofranergene obadenovec) yielded significantly 
improved progression-free survival in one trial [385], 
while another failed to confirm its efficacy in combina-
tion with bevacizumab (phase III study: NTC02511405) 
[386]. VB-111 was constructed using a replication-defec-
tive adenovirus serotype 5 vector attached to a modi-
fied murine pre-proendothelin promoter (PPE-1) and 
human Fas-chimera transgene [387]. Current data indi-
cates that sphingolipids contribute to the development 
of cancer resistance to both immune surveillance and 
TNF/TRAIL-induced apoptosis, representing a promis-
ing target for future clinical strategies. The addition of 
sphingolipid modulators may increase the efficacy of this 
treatment, although this hypothesis is yet to be tested.

Several decades ago, the glycolytic pathway was sug-
gested as a clinical target to sensitize tumor cells to solu-
ble death ligands [52]. Glucose deprivation or inhibition 
of glucose metabolism enhanced apoptosis induced by 
TNF-α, CD95 agonistic antibody, and TRAIL in myeloid 
leukemia U937, cervical carcinoma HeLa, and breast car-
cinoma MCF-7 cells [52]. The effect was also observed 
in the human B-lymphoblastoid cell line SKW6.4, a pro-
totype line for mitochondria-independent DR-induced 
apoptosis. Changes in c-FLIP(L) and cFLIPs levels were 
observed in some but not all studies cell lines under glu-
cose deprivation [52, 388]. The changes were associated 
with activation of mitochondrial metabolism [388, 389]. 
Recent findings indicate a key role of sphingolipids in the 
regulation of cancer metabolism and anticancer immune 
responses [20, 390]. Dramatic changes in sphingolipid 
composition and processing were reported in cancer tis-
sues [391]. Considering the involvement of sphingolipid 
network in TNF-α/TRAIL-activated signaling, it is rea-
sonable to test SphK1/S1P receptor axis modulators as 
substances capable of strengthening anticancer therapy 
and increasing overall survival.

The delivery of TME-stimulating agents and repro-
gramming of the TME can be facilitated by nanocarriers 
[222, 392]. It has been shown that localized delivery of a 
nanoparticle-conjugated TLR7/8 agonist triggered lymph 
node-located DCs activation and promoted proliferation 
of tumor antigen-specific CD8+ T cells [392]. Cancer 
cell-targeted delivery of complex death-enhancing agents 
has demonstrated promising preclinical results. TRAIL-
anchored artificial liposomes (defined as large unilamellar 
vesicle (LUV)) were constructed and loaded with DOX 
(named as LUVDOX-TRAIL). The liposome nanoparti-
cle permitted synergistic cytotoxic potential compared 
to the effects of DOX or TRAIL alone. LUVDOX-TRAIL 
cytotoxicity was associated with faster internaliza-
tion of the DOX-loaded liposomes and TRAIL-induced 
activation of caspase-8 [393]. Manipulation of tumor 
ceramide (and/or ceramide-conjugate substance) levels 

was explored as a potential strategy against drug resist-
ant breast cancers [394, 395]. Some original studies 
have utilized the structurally modified analogs of the 
sphingoid backbone of d-erythro-N-octanoyl-sphin-
gosine (Cer). The most potent anti-proliferative analog 
(2S,3R)-(4E,6E)-2-octanoylamidooctadecadiene-1,3-diol 
(4,6-diene-Cer) induced apoptosis in TNF-α-resistant 
MCF-7 cells, MDA-MB-231, and NCI/ADR-RES breast 
cancer cell lines [395]. Detected death-related mecha-
nisms of 4,6-diene-Cer included a prolonged elevation 
of intracellular Cer and were mediated by the mitochon-
drial apoptotic pathway. Moreover, the valuable clini-
cal characteristics of 4,6-diene-Cer include selectivity 
toward transformed breast cells [395]. Although the 
original substances turned out to be quite toxic in vivo, 
the search for less toxic substances continues. It has been 
found that 3-ketone-4,6-diene ceramide efficiently kills 
chemo-resistant breast cancer cells [396]. Recently, new 
ceramides with anticancer properties were extracted 
from red algae of the Red Sea [397].

Several novel methods were designed to deliver TNF-α 
locally as part of intratumoral vaccination [398]. The effi-
cient nonviral gene therapy was developed to provide 
localized transfer of multiple genes into tumors in vivo. 
Gene electrotransfer (GET) was named as the most effi-
cient method of local delivery of toxic cytokines. For 
instance, TNF-α and IL-12 (both can boost the primed 
local immune response) genes were transferred in murine 
melanoma cancers using GET [399]. The transfer was fol-
lowed by a pronounced delay in tumor growth associated 
with strong antitumor immune response with extensive 
infiltration of immune cells in the tumor site [400]. Nota-
bly, GET was accompanied by resistance of the mice to 
secondary challenge with tumor cells [399]. Furthermore, 
phage and yeast display (bacteriophage strategy) were 
used for a pre-selection of non-neutralizing antibodies 
which were used to “piggyback” on TNF-α and enter cells 
through binding TNFRs [401]. This approach successfully 
reshaped the TME towards recruitment of antitumor 
immune cells (such as N1 neutrophils, M1 macrophages, 
and activated CD4+/CD8+ T cells) [401]. Combined 
testing of this bacteriophage technology with SphK1/
S1P-targeting agents warrants future investigation.

Several conserved TNF-derived peptides can trig-
ger apoptosis and/or necrosis in tumor cells [402] inde-
pendent of TNFRs. Some of the necrosis-inducing 
TNF-derived peptides (like P1516) with strong mem-
brane-disrupting characteristics may be released during 
TNF degradation [402]. The peptide’s cytolytic property 
was linked to its unique β-barrel/β-hairpin secondary 
structure [3]. Immunohistochemical analysis of tumor 
tissues from P1516-treated mice indicated extensive 
destruction to the cancer vasculature [402], which was 
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associated with lower metastasis and better survival. 
The study indicated that TNF sequence contains cryp-
tic functions that are triggered only after TNF partial 
and or specific degradation. This finding opens a previ-
ously unexplored perspective of TNF biology relevant 
to immune regulation and cancer immune surveillance. 
TNF-derived peptides P15 and P16 were suggested as a 
novel class of antitumor agents [402].

Tumor-specific cytotoxic T lymphocytes (CTLs) repre-
sent a natural and highly effective tool in cancer immu-
notherapy [4]. Considering the immunoregulatory role 
of sphingolipids (specifically the SphK1/S1P receptor 
axis), agents targeting sphingolipids may be employed 
to manipulate CTLs. However, only very few agents tar-
geting this pathway have been approved for anticancer 
clinical testing. The approved agents include fingolimod 
(an S1P receptor antagonist; Phase I; NCT02490930 
and NCT03941743); Safingol (L-threo-dihydrosphin-
gosine; a PKC inhibitor; Phase 1; NCT01553071 and 
NCT00084812); sonepcizumab (ASONEP; an S1P-spe-
cific monoclonal antibody; Phase I/II; NCT00661414 and 
NCT01762033); ABC294640 (an SphK2 inhibitor; Phase 
I/II; NCT01488513, NCT02229981, NCT02757326, 
NCT02939807, NCT03377179, and NCT03414489). 
One study is currently recruiting to assess sphingolipids 
as predictive biomarkers in melanoma (NCT03627026). 
However, the potential testing will be on the way when 
new SphK1/S1PR modulators/inhibitors are generated 
and evaluated in preclinical settings. As a promising sign, 
the synergistic effects of DOX and SphK1 inhibition were 
reported in breast cancer cells [220].

A novel and less toxic strategy for advanced T cell infil-
tration in cancers has been suggested recently. A fusion 
protein Cys–Asn–Gly–Arg–Cys–Gly–TNF (called 
NGR-TNF) capable of targeting the cancer vasculature 
was constructed by Elia et  al. [403] to assist intratumor 
infiltration by activated CTLs. It has been reported that, 
in a transgenic prostate adenocarcinoma mice model, 
combined treatment with NGR-TNF (with adoptive T 
cell therapy (ACT) and immune checkpoint blockade) 
effectively improved overall survival and delayed the dis-
ease progression. NGR-TNF promoted tumor infiltration 
by CTLs associated with beneficial T-effector/Treg cell 
ratios [403]. The authors of this study suggest that thera-
peutic targeting of sphingolipid pathway may contribute 
to this process.

Conclusions
Despite all the therapeutic impediments of TNF-α/
TRAIL application, the cytotoxic cytokines remain the 
strongest natural defense to cancer in humans. TNF-α 
to be a prominent effector of immune surveillance 
which can kill mutated or abnormal cells, including 

cancer cells, under physiologic conditions [37]. Thus, to 
improve current therapeutic methods, it would be ben-
eficial to preserve the pro-apoptotic capacity of TNF-α 
and block only its pro-survival branch. Notably, the can-
cer-promoting chronic inflammation which contributes 
oncogenic transformation, underscores a need to deci-
pher the DR pathway and design agents that will block 
TNF/TRAIL/DR pro-survival signaling [401]. A wide 
range of substances and therapeutic methods has been 
developed to enhance immunotherapy effects in cancer 
patients [394, 396–399, 401–404], although combined 
application of sphingolipid-targeting agents and TNF-α 
pathway activating methods seems neglected. Appar-
ently, SphK/S1P/S1PR axis plays an important role in 
transduction of TNF-α effects, both as a mediator and 
regulator of the cytokine signaling (Table 1). The gener-
ated anticancer agents which can selectively inhibit the 
growth-promoting effects of SphK (including dual SphK 
isozyme inhibitor, SKI-II (4-[4-(4-chloro-phenyl)-thiazol-
2-ylamino]-phenol) represent a class of promising thera-
peutic substances [119, 405]. However, the production of 
agents that target the proper SphK isoform in cancer cells 
is challenging, although a large group of patented agents 
has been synthesized [406].

Nanoparticles represent a very promising approach for 
the targeted delivery of immunotherapy agents. Among 
the cutting-edge nanomedicine vehicles is a group of 
artificial liposomes with anchored sTRAIL, called LUV-
TRAIL, which also improved delivery and reduced 
toxicity of immunotherapy [393]. Recent studies have 
tested the delivery and anticancer effects of TNF-α-
loaded liposomes [404] or plant viral nanoparticles [407], 
TRAIL/paclitaxel multifunctional nanocarrier, graphene-
based nanocarrier with DR4-targeting antibody/AKT 
siRNA, and anti-DR5-conjugated lipid-based nanocar-
riers [408]. Other nanoparticle-based agents displayed 
efficient pro-apoptotic properties via interactions with 
DR-signaling, including CD95 receptors [409] and the 
TRAIL network [400]. However, most of these stud-
ies were conducted in  vitro, indicating a need for addi-
tional in vivo experiments before clinical testing may be 
considered. The addition of sphingolipid modulators to 
this regimen, specifically novel inhibitors of S1P1-S1P3 
receptors, may augment the efficacy of nanoparticles 
in future studies. The success of personalized immuno-
therapy towards the re-activation and/or reformation of 
natural anti-cancer immunity may be defined by the de-
activation of SphK/S1P/S1PR axis using novel inhibitors 
of sphingolipid pathway.

Abbreviations
4,6-diene-Cer  (2S,3R)-(4E,6E)-2-octanoylamidooctadecadiene-1,3-diol
ACE  Angiotensin converting enzyme
Apaf-1  Apoptosis protease activating factor-1



Page 29 of 40Sukocheva et al. Cell Communication and Signaling          (2024) 22:251  

ATF4  Protein kinase R-like endoplasmic reticulum kinase-mediated 
activating transcription factor 4

Bak  Bcl-2 antagonist killer 1
Bax  Bcl2 associated X protein
Bcl-2  B-cell lymphoma-2 protein
BMM  Bone marrow-derived monocyte/macrophage
C1P  Ceramide-1-phosphate
CAFs  Cancer associated fibroblasts
CDase  Ceramidase
Cer  D-erythro-N-octanoyl-sphingosine
CERK  Ceramide kinase
CerS  Ceramide synthase
CERT  Ceramide transport protein
CFTR  Cystic fibrosis transmembrane conductance regulator
CGA   Chlorogenic acid
cIAP  Cellular inhibitor of apoptosis protein
COX-2  Cyclooxygenase-2
CRDs  Cysteine-rich domains
CREB  Cyclic-AMP responsive element binding protein
CSC  Cancer stem-cell
CTLs  Cytotoxic T lymphocyte
cyt c  Cytochrome c
DcR  Decoy receptor
DD  Death domain
DED  Death effector domain
DENV  Dengue virus
DHS  Dihydroxysphingosine
DIABLO  Direct Inhibitor of Apoptosis-Binding protein with Low pI
DMS  N,N-dimethylsphingosine
DUB  Dual deubiquitylating enzyme
EGCG   Epigallocatechin gallate
EMT  Epithelial-to-mesenchymal transition
eNOS  Endothelial nitric oxide (NO) synthase
ER  Estrogen receptor
ERK  Extracellular-signal-regulated kinase
EZH2  Enhancer of zeste homolog 2, a histone methyltransferase
FADD  Fas-associated death domain
FLICE  FADD-like IL-1β-converting enzyme
FLIP  FLICE inhibitory protein
fMLP  N-Formylmethionyl-leucyl-phenylalanine
GET  Gene electrotransfer
GFAP  Glial fibrillary acidic protein
HCC  Hepatocellular carcinoma
HDAC  Histone deacetylase
HFD  High-fat diet
HIF-1α  Hypoxia-inducible factor-1α
HMVEC-C  Human cardiac microvascular endothelial cells
HSP  Heat shock protein
ICIs  Immune checkpoint inhibitors
IDO  Indoleamine 2,3-dioxygenase
IFN-γ  Interferon-γ
IGF  Insulin-like growth factor
IKK  I-kappa-B kinase
iNOS  Inducible nitric oxide synthase
IRE1α  Inositol-requiring transmembrane kinase/endoribonuclease 

1α
JAK2  Janus kinase 2
JIP3  JNK-interacting protein 3
JNK  C-Jun N-terminal kinase
LAMP-2  Lysosomal associated membrane protein-2
LEPR  Leptin receptor
LPS  Lipopolysaccharide
LUV  Large unilamellar vesicle
mAbs  Monoclonal antibodies
MAPK  Mitogen-activated protein kinase
MDS  Myeloid-derived suppressor
MFBD  Myristate-enriched milk fat-based diet
MMP  Matrix metalloproteinase
MnSOD  Mitochondrial superoxide dismutase
mTNF-α  Transmembrane TNF-α
mTOR  Akt/mammalian target of rapamycin

mtROS  Mitochondrial reactive oxygen species
NADPH  Nicotinamide adenine dinucleotide phosphate hydrogen
NF-κB  Nuclear factor kappa B
NGR-TNF  Cys–Asn–Gly–Arg–Cys–Gly–TNF fusion protein
NK  Natural killer T cells
NSAIDs  Nonsteroidal anti-inflammatory drugs
OPG  Osteoprotegerin
OPGL  Osteoprotegerin ligand
OXPHOS  Oxidative phosphorylation
PGE2  Prostaglandin E2
PI3K  Phosphatidylinositol 3-kinase
PPE-1  Pre-proendothelin promoter
RANTES  Regulated upon activation, normal T cell expressed and 

secreted (CCL5)
rhTRAIL  Recombinant human TRAIL
RIP  Receptor interacting protein
RIPK1  Receptor-interacting protein kinase 1
RTKs  Receptor tyrosine kinases
S1P  Sphingosine-1-phosphate
S1P1  S1P3, sphingosine 1-phosphate receptor 1 and 3
S1PR  S1P receptor
SFAs  Saturated fatty acids
SFN  Sulforaphane
siRNA  Small interfering ribonucleic acid
SKI-I-Asp  Aspirinyl-conjugated SphK inhibitor
SKI-II  4-[4-(4-Chloro-phenyl)-thiazol-2-ylamino]-phenol
Smac  Second mitochondria-derived activator of caspase
SOCS3  Suppressor of cytokine signaling 3
SphK  Sphingosine kinase
SPL  S1P lyase
SPPase1  Sphingosine-1-phosphate (S1P) phosphatase 1
SPT  Serine palmitoyltransferase
STAT   Signal transducer and activator of transcription
TAM  Tumor-associated macrophage
TGFβ  Transforming growth factor β
TL1A  TNF-like cytokine 1A
TME  Tumor microenvironment
TNFAIP3  TNF-α-induced protein 3
TNFR  TNF-α receptor
TNF-α  Tumor necrosis factor-α
TRADD  TNFR-associated death domain
TRAF2  TNF receptor-associated factor 2
TRAIL  TNF-related apoptosis-inducing ligand
Treg  Regulatory T cell
VCAM-1  Vascular cell adhesion molecule-1
VEGF  Vascular endothelial growth factor
YB-1  Y-box binding protein-1
δTE  δ-Tocotrienol
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