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Introduction
Sepsis represents a form of systemic inflammatory 
response syndrome triggered by severe infections charac-
terized by systemic dissemination disease and capable of 
causing multi-organ impairment. Recent epidemiologi-
cal data from a survey conducted between 2015 and 2016 
revealed a notably high 90-day mortality rate of 35.5% for 
sepsis [1]. Additionally, a multicenter study conducted 
in Brazil in 2017 reported that one-third of intensive 
care unit (ICU) beds were occupied by septic patients, 
with an alarming mortality rate of 55.7% [2]. In current 
clinical practice, the prompt initiation of early and effi-
cacious antimicrobial treatment, along with the timely 
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Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a 
global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the 
most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), 
and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated 
with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of 
endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells 
in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and 
their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, 
in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several 
pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for 
modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant 
pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-
induced ALI/ARDS.
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administration of vasopressors, are vital components in 
the management of this condition [3]. Despite the many 
treatment strategies available in clinical settings aimed at 
prolonging life and reducing short-term mortality, thus 
far, there is a lack of highly efficient treatments that can 
mitigate the adverse events associated with sepsis [4]. 
Among these, the lung, a vital organ responsible for gas 
exchange and a significant immune organ defending the 
host against inhaled pathogens, allergens and xenobiot-
ics (such as in allergic asthma and pneumonia), is the 
most susceptible organ affected during sepsis [5]. Sep-
sis-induced acute lung injury (ALI) and its most severe 
form, acute respiratory distress syndrome (ARDS), are 
devastating clinical conditions marked by refractory 
hypoxemia, respiratory distress, and non-cardiogenic 
pulmonary edema [6, 7]. Clinically, ALI and ARDS repre-
sent distinct stages in the same disease process, with ALI 
representing the early and milder phase, while ARDS sig-
nifies the late and often severe stage. Presently, the Berlin 
definition, established by an expert panel in 2012, serves 
as the unified standard for ARDS diagnosis. This defini-
tion encompasses various criteria, including the timing of 
onset, chest imaging findings, origin of edema, oxygen-
ation parameters, and other clinical indicators [8]. The 
key differentiator in the diagnostic process between ALI 
and ARDS lies in the oxygen partial pressure to inspira-
tory fraction (PaO2/FiO2) ratio, whereby ALI is character-
ized by a PaO2/FiO2 ratio ≤ 300mmHg and the PaO2/FiO2 
limiting value of ARDS is lower, ≤ 200mmHg [9]. Despite 
significant advances in the understanding and manage-
ment of ALI/ARDS, there remains a substantial lack of 
drugs capable of effectively treating ALI induced by sep-
sis due to limited research on its underlying mechanisms.

The endothelium, comprising endothelial cells (ECs), 
forms a monolayer barrier along the inner surface of 
the vasculature, playing diverse roles in lung pathology 
and serving as a semi-permeable interface between cir-
culating blood and underlying tissues. In recent years, 
researchers have increasingly focused on the activation of 
ECs and their interactions with immune cells and stromal 
cells in the context of sepsis-induced ALI/ARDS, as they 
are often related to endothelial barrier disruption [10]. 
Damage to this barrier, driven by an excessive inflamma-
tory response, results in increased pulmonary vascular 
permeability. This facilitates the entry of circulating flu-
ids, macromolecules and leukocytes into alveoli, leading 
to alveolar flooding and neutrophil infiltration, thereby 
significantly contributing to the elevated mortality asso-
ciated with ALI/ARDS [11]. In this review, we discuss 
the significance of ECs and ECs-immune cell and ECs-
stromal cell interactions in the pathogenesis of sepsis-
induced ALI or ARDS. Additionally, we discuss strategies 
for targeting ECs and their interactions with immune 
cells and stromal cells, either directly or indirectly, as 

potential therapeutic approaches to mitigate the adverse 
effects of this intercellular communication in the context 
of this disease.

Endothelial cell activation and dysfunction in 
sepsis-induced ALI/ARDS
ECs, situated along the inner lining of blood vessels, play 
a pivotal role in orchestrating numerous physiological 
functions, such as regulating blood fluidity, vascular tone, 
cellular and nutrient transport, and promoting neovas-
cularization under normal conditions [12]. They are not 
only sensitive to self-produced substances and extracel-
lular matrix components [13] but also activate transcel-
lular and intracellular signaling pathways by secreting 
molecules in response to various stimuli, thereby contrib-
uting to the regulation of hemostasis, vasomotor control 
and immunological functions [14–16]. In addition, pul-
monary ECs, which are responsible for regulating alve-
olar-capillary interactions, are interconnected through 
intercellular junctions, such as tight junctions (TJs), gap 
junctions and adherens junctions (AJs) [17]. TJs between 
ECs are formed by the outermost plasma membrane 
and consist of occludins, claudins and junctional adhe-
sion molecules connected to cytoplasmic proteins. These 
proteins are in turn linked to the ECs’ actin cytoskeleton 
through the zonula occludens family, and as a result, 
TJs control endothelial paracellular permeability by 
regulating the diffusion of fluids, ions, and small plasma 
proteins, as well as the infiltration of cells such as leu-
kocytes, neutrophils, and lymphocytes. This mechanism 
effectively establishes a barrier within pulmonary blood 
vessels [18]. In addition, AJs are composed of calcium-
dependent cadherins, with vascular endothelial cadherin 
(VE-cadherin) being the primary cadherin involved. VE-
cadherin binds to intracellular catenin proteins, which, in 
turn, interact with other protein partners within the actin 
cytoskeleton. AJs are also essential regulatory elements 
governing the paracellular transport of cells and solutes 
between the bloodstream and the interstitium, which sig-
nificantly influences endothelial cell permeability, white 
blood cell migration, and the formation of edema, among 
other essential functions [19].

Endothelial activation refers to the response of ECs 
to various stimuli, including hypoxia, cytokines such as 
TNF-α and IL-1β, chemokines, thrombin and bacterial 
endotoxin (LPS), as well as interactions with inflamma-
tory cells. Typically, endothelial activation is initiated by 
the interaction of LPS with pattern recognition recep-
tors on the surface of ECs, which include Toll-like recep-
tors (TLRs), Pathogen-Associated Molecular Patterns 
(PAMPs) and Damage-Associated Molecular Patterns 
(DAMPs) [20]. Among these receptors, TLR4 is the pri-
mary receptor for LPS expressed in ECs, and its activa-
tion by LPS leads to the modulation of inflammatory 
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cytokines. This activation process forms the basis for phe-
notypic transitions and other functional changes in ECs, 
involving a shift from a resting state to a pro-inflamma-
tory and coagulant phenotype, which promotes adhesion 
and increases oxidative stress [21]. Increased expression 
or release of EC adhesion molecules and other cytokines, 
along with the upregulation of proinflammatory tran-
scription factors, represent the most typical hallmark of 
endothelial activation [22], such as the Nuclear factor of 
the kappa light chain (NF-κB pathway) [23, 24]. Previous 
studies have shown that depleting Yes-associated protein 
(YAP) in ECs significantly enhances the inflammatory 
response in a cecal ligation and puncture (CLP)-induced 
sepsis model, highlighting the role of tumor necrosis 
factor receptor-associated factor 6 (TRAF6)-mediated 
activation of the NF-κB pathway in regulating EC activa-
tion [25]. Additionally, recent research has reported that 
TRIM47, an E3 ubiquitin ligase highly expressed in ECs, 
activates NF-κB and mitogen-activated protein kinase 
(MAPK) signaling pathways through K63-associated 
TRAF2 ubiquitination to promote LPS-induced lung 
inflammation and the development of ALI/ARDS in ECs 
[26].

Endothelial dysfunction is characterized by a pro-
inflammatory state, impaired vasodilation and increased 
propensity for thrombosis within the endothelium. In the 
context of sepsis, severe endothelial dysfunction leads to 
disturbances in hemostasis, aberrant vascular reactivity, 
and tissue edema. Specifically, in sepsis-induced ALI/
ARDS, ECs can release inflammatory mediators after EC 
activation and recruit leukocytes, which increase their 
adhesion to the vascular endothelium and infiltrate into 
deeper layers. Once leukocytes, particularly neutrophils 
and monocytes, enter the lung parenchyma, they exac-
erbate an imbalance between pro-inflammatory and 
anti-inflammatory responses due to an over-activated 
immune reaction within the lungs, leading to a cytokine 
storm and damage to vascular and lung tissues [26, 27]. 
Moreover, excessive activation of ECs can trigger coag-
ulation in an attempt to isolate infections. The result-
ing endothelial damage from this excessive activation 
promotes procoagulation and increased permeability, 
resulting in capillary thrombosis, disseminated intra-
vascular coagulation (DIC), pulmonary edema and pul-
monary hemorrhage [28]. The adhesion of leukocytes to 
ECs and their subsequent migration across ECs, medi-
ated by these factors, can stimulate ECs to adopt anti-
inflammatory and other functions, ultimately leading to 
EC dysfunction. Therefore, while ECs initially respond to 
various stimuli by modifying the release of adhesion mol-
ecules and other cytokines, if the level of endothelial acti-
vation surpasses a certain threshold, ECs progress into a 
state of dysfunction, further compromising the integrity 
of the endothelial barrier. Throughout this entire process, 

ECs adapt their phenotype and function, including coag-
ulation and pro-inflammatory responses, in an effort to 
regulate the pulmonary microenvironment.

Glycocalyx damage
ECs are enveloped by a layer of glycocalyx, strategically 
positioned to interact with blood-borne cells and vaso-
active mediators, enabling them to perceive mechani-
cal, chemical, and cellular stimuli [29]. The endothelial 
glycocalyx comprises three main components: mem-
brane-binding proteoglycans (PGs) (such as syndecan 
and glypican), glycosaminoglycan (GAG) side chains 
attached to the core protein of proteoglycans, and plasma 
proteins (such as albumin and antithrombin) [30]. Addi-
tionally, GAG within the glycocalyx can bind to vari-
ous substances, such as hyaluronic acid (HGAG within 
the glycocalyx can bind to various substances, such as 
hyaluronic acid (HA) and thrombomodulin (TM) and 
thrombomodulin (TM), to stabilize the glycocalyx [31]. 
In sepsis-induced ALI, the glycocalyx on ECs undergoes 
degradation or shedding, exposing signal receptors on 
the endothelial surface. Syndecan-1, a crucial biomarker 
for glycocalyx integrity, is released into the bloodstream 
upon glycocalyx degradation [32]. Hence, syndecan-1 
serves as a hallmark of ALI/ARDS, and the measure-
ment of its serum levels can predict the progression of 
ALI/ARDS in patients [33]. Using both electron and 
fluorescence intravital microscopy, researchers observed 
that the thickness of the endothelial glycocalyx in septic 
mice measured only 0.98 nm, in contrast to 70.68 nm in 
matched control subjects [34]. In line with these find-
ings, Inagawa et al. reported severe disruption, peeling, 
and coagulation of the endothelial glycocalyx, which nor-
mally appears as a “moss-like structure” in LPS-induced 
mice [32]. Current studies have revealed that endothelial 
glycocalyx degradation during sepsis occurs via inflam-
matory mechanisms involving heparinase, metallopro-
teinases, and hyaluronidase [35] (Fig. 1).

Heparinase, classified as an endoglycosidase, plays a 
pivotal role in cleaving heparan sulfate (HS) within gly-
cocalyx, contributing to the degradation and remod-
eling of the extracellular matrix [36]. It is activated in 
sepsis-induced ALI/ARDS, leading to the degrada-
tion of HS moieties [37]. Heparinase-1, the sole identi-
fied mammalian enzyme capable of breaking down HS 
polysaccharides into shorter-chain oligosaccharides, 
represents the only known GAG-sheddase activated 
during sepsis-induced ALI/ARDS [38]. Crocin has been 
reported to inhibit cathepsin L and heparinase, pro-
tecting against HS degradation and preserving glyco-
calyx integrity [39]. Concurrently, recent studies showed 
that inhibiting angiopoietin-2 (Ang2) could reduce the 
degree of glycocalyx degradation and protect against 
lung injury [40]. Importantly, Ang2, operating in a 
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Heparinase-1-dependent manner, has been identified 
as a potent catalyst for glycocalyx degradation both in 
vivo and in vitro [41]. Moreover, the Silent information 
regulator sirtuin 1 (SIRT1)-mediated pathway has been 
shown to preserve the HS within the endothelial gly-
cocalyx against LPS-induced ALI/ARDS  [42–44]. In a 
mouse model of CLP-induced lung injury, interferon-β 
was found to restore endothelial glycocalyx damage by 
modulating the SIRT1/Heparinase-1 pathway, indicating 
its potential to protect against endothelial damage during 
sepsis by suppressing Heparinase-1 expression [45]. Sev-
eral studies have highlighted the significant role of Hepa-
rinase-1 in glycocalyx degradation [46, 47], and inhibiting 
heparinase has been associated with protective effects 
after the onset of sepsis [37]. Heparinase-2, lacking gluc-
uronidase activity, may potentially inhibit Heparinase-1 
[48]. Moreover, a recent report suggests that inhibiting 
heparinase can ameliorate LPS-induced ALI/ARDS by 
safeguarding the pulmonary endothelial glycocalyx and 
promoting its restoration, offering a promising thera-
peutic target [39, 49, 50]. Several studies have shown that 
heparinase inhibitors, such as ulinastatin [46] and crocin 
[39], can reduce the serum levels of HS in LPS-induced 
ALI/ARDS to protect the integrity of endothelial gly-
cocalyx. Since heparinase has been discovered to play a 
role in glycocalyx degradation, researchers have begun 

investigating the interaction between Heparinase-1 and 
Heparinase-2. However, whether the relative expression 
levels of Heparinase-1 and Heparinase-2 determine the 
extent of HS shedding and subsequent glycocalyx degra-
dation remains an area of ongoing exploration [51].

Except for HS degradation by heparinase, various 
enzymes also degrade other glycocalyx components, 
such as GAG and PG. HA can be degraded by six differ-
ent hyaluronidases [52], and evidence has shown elevated 
levels of HA in septic patients compared to non-septic 
individuals [53]. Notably, while pathogenic microorgan-
isms are known to produce hyaluronidases [54], the pre-
cise mechanisms governing their upregulation in vitro 
remain incompletely understood. Members of the A Dis-
integrin and Metalloproteinases (ADAMs) and matrix 
Metalloproteinase (MMPs) families can cleave PGs from 
the endothelial glycocalyx, leading to their shedding into 
the plasma [55, 56]. ADAM family members are upregu-
lated during sepsis, with their levels correlating with dis-
ease severity and outcomes. For instance, in pre-clinical 
sepsis models and ex vivo preparations of human lungs 
perfused with LPS, ADAM15 could cleave PGs from the 
endothelial glycocalyx [56]. The concentration of MMPs 
in the plasma has similarly been shown to correlate with 
the severity of sepsis, and inhibiting MMPs has been 
demonstrated to prevent sepsis-induced ALI/ARDS, 

Fig. 1 Mechanism of glycocalyx degradation in LPS or septic conditions. Inflammatory factors mediate the expression of MMPs to induce glycocalyx 
degradation. TNF-α acts on ECs to express protease or nucleotide enzyme, inducing glycocalyx degradation. Neutrophil proteinases released by neutro-
phils act on glycocalyx, directly causing its degradation. Glycocalyx degradation exposes adhesion factors on the surface of ECs that induce adhesion and 
interaction of platelets and leukocytes on the surface of ECs
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particularly MMPs-7, MMPs-9, and MMPs-13 [57–60]. 
The enzymatic degradation of the endothelial glycocalyx 
carries significant physiological implications, as the deg-
radation products can disseminate through the blood-
stream and affect distant sites, thereby influencing the 
severity of lung injury and prognosis.

Increased adhesion and recruitment
Pro-adhesion is a phenotypic change in activated ECs 
that leads to the adhesion of leukocytes to the vessel 
wall, thereby promoting local inflammatory responses, 
including the release of inflammatory factors. Activated 
ECs respond specifically to inflammatory factors secreted 
by leukocytes by expressing adhesion molecules, such 
as P-selectin, E-selectin, intercellular cell adhesion mol-
ecule-1 (ICAM-1) and vascular cell adhesion molecule-1 
(VCAM-1), on their cell surface, which then facilitates 
the rolling and strong adhesion of leukocytes on the vas-
cular endothelial surface and subsequently promotes the 
migration of leukocytes into the underlying tissues [61]. 
LPS can activate monocytes to induce programmed cell 
death (apoptosis) in ECs through a combination of TNF-
α-dependent and TNF-α-independent mechanisms, 
exacerbating the pro-inflammatory response [62]. In 
LPS-induced septic ALI/ARDS, pulmonary microvas-
cular ECs are stimulated to release TNF and IL-8, which 
is accompanied by an increase in intracellular calcium 
levels. Cytosolic calcium oscillations then induce proin-
flammatory gene transcription and endothelial E-selectin 
expression, initiating a series of activated reactions [63]. 
Subsequently, high mobility group box 1 (HMGB1) can 
be secreted by ECs after LPS stimulation, leading to 
increased expression of cytokines, adhesion molecules 
and chemokines, which further exacerbates inflamma-
tion and injury [64]. The degradation of the glycocalyx 
structure exposes adhesion molecules like E-selectin and 
ICAM-1 on the denuded endothelium and induces the 
recruitment of leukocytes, contributing to neutrophil 
adhesion and leading to diffuse alveolar damage during 
sepsis-induced ALI [30]. The mRNA and protein levels of 
Syndecan-4, one of the components of the glycocalyx, are 
significantly increased following inflammatory injury. Its 
downregulation severely exacerbates leukocyte adhesion 
and inflammatory responses in both in vivo and in vitro 
models of sepsis-induced ALI/ARDS [65]. Research using 
genetic and pharmacological approaches has revealed 
that the glycolytic regulator 6-phophofructo-2-kinase/
fructose-2, 6-biphosphatase (PFKFB3) can increase the 
expression of adhesion molecules and promote mono-
cyte adhesion in ECs, which explains why increased gly-
colysis can worsen pulmonary inflammation and damage 
during sepsis-induced ALI/ARDS [66]. Furthermore, 
when ECs interact with epidermal growth factor recep-
tors, they can activate tumor necrosis factor receptor-1 

(TNFR1)-mediated inflammation [15]. These findings 
collectively illustrate that molecules released from leu-
kocytes can regulate ECs, while ECs themselves can 
express cytokines to recruit leukocytes and facilitate their 
migration into deep tissues. As leukocytes traverse blood 
vessels, they become locally activated by chemokines 
released by ECs, resulting in the expression of integrins 
on their surface, facilitating firmer adhesion to ICAM-1 
and VCAM-1 and initiating their transendothelial migra-
tion into injured tissues [67].

The NF-κB pathway is one of the most classical and 
important inflammatory signaling pathways during 
sepsis-induced ALI/ARDS. In a resting state, NF-κB, a 
dimeric transcription factor found in B lymphocytes, is 
bound to NF-κB inhibitor (IκB) in the cytoplasm. How-
ever, when external stimuli are encountered, such as 
LPS, IκB kinase (IKK) can become activated, leading to 
the detachment and degradation of the IκB protein from 
NF-κB. Subsequently, NF-κB is able to bind to specific 
DNA regions, initiating the transcription of several genes 
that upregulate the levels of proinflammatory cytokines 
such as IL-2 and IL-6, which in turn activates the NF-κB 
signaling cascade in an autocrine manner, amplifying the 
inflammatory response. Research has demonstrated that, 
after LPS stimulation, vascular adhesion molecules are 
highly secreted via the SIRT1/NF-κB/NLRP3 pathway 
[14]. In sepsis-induced ALI/ARDS, dysregulation of the 
NF-κB pathway in ECs can result in abnormal chemokine 
production and the recruitment of massive inflamma-
tory cells, leading to excessive inflammation and tissue 
damage [68, 69]. In septic mice, the selective blockade 
of EC-intrinsic NF-κB pathway significantly reduced 
lung inflammatory injury and mortality and alleviated 
endothelial dysfunction [70]. Additionally, activation of 
the NF-κB pathway can stimulate ECs to express adhe-
sion molecules, which increases the binding and detach-
ment of leukocytes and ECs and provides the foundation 
for subsequent leukocyte transmigration. Moreover, 
activated ECs release danger-associated molecular pat-
terns, such as histones (particularly H3 and H4), which 
can further induce the nuclear factor kappa B inflamma-
tory cascade, upregulate EC adhesion molecules such as 
ICAM1, VCAM1 and E-selectin, and release of inflam-
matory cytokines at high doses of H3 and H4 [71]. Thus, 
the NF-κB pathway represents a pivotal and prominent 
therapeutic target in sepsis-induced ALI/ARDS.

Furthermore, the production of reactive oxygen spe-
cies (ROS), reactive nitrogen species and other oxidants 
by activated ECs saturate local antioxidants and con-
tribute to tissue injury directly by downregulating VE-
cadherin, upregulating neutrophil adhesion molecule 
expression and releasing neutrophil chemotactic fac-
tors [29]. Targeting NADPH oxidase 4 (NOX4) has been 
suggested as a potential innovative treatment approach. 
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Sun et al. reported that ECs lack formyl peptide recep-
tors but can be activated by mitochondrial proteins (mt-
proteins), suggesting that non-formylated mt-proteins 
serve as endogenous substances that activate ECs, fur-
ther increasing EC permeability and promoting adhesion 
between neutrophils and ECs [72].

Increased permeability
Increased endothelial permeability, indicating an imbal-
ance of vascular homeostasis due to endothelial barrier 
dysfunction, is a major pathological feature of sepsis-
induced ALI/ARDS. As described above, the glycocalyx 
is targeted and shed by inflammatory mediators, lead-
ing to a thinner glycocalyx layer. Numerous findings 
have demonstrated that inflammatory stimuli or several 
inflammatory factors may accelerate the degradation of 
the endothelial glycocalyx, including TNF-α [37], ROS 
[73] and others. Moreover, MMPs can directly cleave 
PGs, including syndecan-1 [35, 74]. Following the deg-
radation of the glycocalyx, mediated by various enzymes 
and signals, the binding proteins on ECs are reduced to 
some extent, thereby increasing endothelial permeabil-
ity, allowing plasma proteins (e.g., albumin) and fluid to 
move across the vascular wall, resulting in tissue edema 
formation [35, 75]. Ang-2 is recognized as an intrin-
sic antagonist of Ang-1 secreted by ECs, which can also 
mediate glycocalyx degradation [35, 40]. Normally, Ang-2 
prevents anti-inflammatory signaling induced by the sta-
ble binding of Ang-1 to Tie receptor 2 (Tie2). When acti-
vated by Ang-1, Tie2 inhibits the transcriptional activity 
of the forkhead box protein O1 (FOXO1) transcription 
factor [76], which further promotes vascular endothelial 
stability and reduces endothelial glycocalyx degradation 
through various mechanisms, such as inhibiting Ang-2 
production. However, it has also been demonstrated that 
Tie2 activation promotes the protection and reconstruc-
tion of the endothelial glycocalyx in sepsis [77], providing 
a therapeutic strategy to mediate Ang-2 and Tie2 to pro-
tect the endothelial glycocalyx and reduce the increased 
permeability of endothelial cells [78, 79]. Additionally, 
the glycocalyx plays a vital role in limiting the interac-
tion between blood leukocytes and the endothelium by 
“hiding” endothelial cell-associated adhesion molecules, 
including integrins and immunoglobulin superfamilies. 
Currently, other glycocalyx fragments, such as HA and 
HS, have been used as markers of endothelial injury [80]. 
Thus, there is no doubt that glycocalyx degradation leads 
to alterations in endothelial permeability, resulting in or 
exacerbating tissue edema, interstitial fluid shifts, and 
pulmonary edema, making it a promising target for the 
treatment of pulmonary endothelium. Nonetheless, the 
geographic heterogeneity of glycocalyx structure in dif-
ferent vascular locations or at various time points, along 
with the signaling mechanisms involved in degradation 

and GAG regulation, remain subjects of current investi-
gation. These areas hold the potential to unveil specific 
mechanisms.

Furthermore, EC contraction is a known factor that can 
lead to increased permeability, contributing to throm-
bosis formation in damaged areas and associated coagu-
lopathy and disorders. One potential mechanism involves 
the activation of myosin light chain (MLC) kinase 
(MLCK). Thrombin, a disordered thrombin, cleaves and 
activates its G-protein-coupled receptor, protease-acti-
vated receptor-1 (PAR-1), which triggers the activation of 
phospholipase C through Gq protein engagement, lead-
ing to an increase in intracellular Ca2+. Consequently, 
Ca2+/calmodulin (CaM)-dependent MLCK is activated, 
resulting in the phosphorylation of MLC and subsequent 
actomyosin interaction, inducing cell contraction [81]. 
Additionally, Src-mediated tyrosine phosphorylation of 
the unique N-terminal fragment of EC MLCK can acti-
vate EC MLCK. Notably, LPS-induced Rho activation 
relies on Src family kinases’ activity and direct nitration 
of RhoA at a tyrosine side chain [82, 83]. Rho, by directly 
or indirectly increasing MLC phosphorylation, activates 
the downstream effector Rho-kinase, leading to the accu-
mulation of phosphorylated MLC and EC contraction 
[84]. Overall, thrombin has been shown to increase EC 
permeability in a Src/MLCK-dependent manner via an 
MLC-mediated contractile mechanism [85]. Moreover, 
histamine and, to a lesser extent, thrombin activates pro-
tein kinase C-potentiated phosphatase inhibitor of 17 
kD (CPI-17) in a PKC-dependent manner in ECs. The 
CPI-17-mediated mechanism involves the inhibition of 
myosin light chain phosphatase (MLCP) in EC barrier 
regulation, suggesting that artificially induced deple-
tion of CPI-17 can mitigate the increase in microvascu-
lar endothelial permeability [86–88]. These studies and 
observations offer valuable insights for clinical diagnosis 
and treatment, including potential clinical trials.

Furthermore, increased permeability exposes various 
sites and receptors on endothelial cells (ECs), leading 
to their recognition and interaction with various cells, 
including neutrophils. This interaction triggers EC acti-
vation, resulting in the release of leukocytes from the 
blood vessels. When stimulated by inflammatory media-
tors, ECs contract, creating gaps between adjacent cells. 
This phenomenon significantly contributes to increased 
vascular permeability and may exacerbate inflammatory 
responses and oxidative stress or weaken the antico-
agulant effect. Various junctional proteins organize into 
two main complexes: TJs and AJs. These complexes not 
only form the endothelial barrier and regulate paracel-
lular permeability but also provide mechanical stability 
by linking the plasma membrane of adjacent cells to the 
actin cytoskeleton. Additionally, several receptor families 
participate in endothelial barrier function and vascular 
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permeability. Among them, the Tie receptor family, com-
prising Tie1 and Tie2, is predominantly expressed by ECs. 
The PARs family and Rho-associated coiled-coil–form-
ing protein kinases (ROCK) family can either disrupt or 
protect barrier function, depending on the specific acti-
vation of intracellular signaling pathways [10, 31, 89]. In 
summary, various physical injuries, inflammatory media-
tors, oxidative stress responses, and other factors can 
damage the pulmonary endothelium and exacerbate lung 
injury, interfering with endothelial permeability a thera-
peutic target.

Coagulant damage
It is known that multiple mechanisms within the coagu-
lation system act simultaneously to promote a proco-
agulant state of ECs. In a normal state, the negatively 
charged GAGs on the endothelial surface prevent plate-
let adhesion. Healthy ECs inhibit platelet aggregation 
and fibrin formation [90]. However, when activated, ECs 
secrete numerous cytokines that enhance platelet adhe-
sion, thereby modifying coagulation function and leading 
to coagulation disorders. In severe cases, these disorders 

can progress to disseminated intravascular coagulation 
(DIC), characterized by abnormal coagulation activation 
within blood vessels and inadequate coagulation acti-
vation outside of blood vessels [91]. Three vital physi-
ological anticoagulant pathways regulate coagulation 
activation: the tissue factor pathway inhibitor (TFPI), the 
activated protein C (APC) system, and the antithrom-
bin system. These pathways are notably impaired during 
sepsis-induced ALI/ARDS [92]. Coupled with disrupted 
endogenous fibrinolysis, sepsis-induced ALI/ARDS can 
exacerbate coagulation abnormalities (Fig. 2).

TFPI is located in ECs, megakaryocytes and plate-
lets, and it plays a crucial role in maintaining the bal-
ance between coagulation and anticoagulation. TFPI is a 
Kunitz-type protease inhibitor that directly inhibits the 
coagulation cascade by targeting free factor Xa and the 
tissue factor (TF)/factor VIIa/factor Xa complex. TFPI 
typically exists in three isoforms: α, β, and δ [90]. Under 
normal conditions, TF binds to factor VIIa, forming the 
TF/factor VIIa complex, which activates factor X into fac-
tor Xa. Factor Xa then combines with factor Va to create 
the prothrombinase complex on the endothelial surface. 

Fig. 2 Mechanism of glycocalyx degradation in LPS or septic conditions. Mechanisms of intravascular coagulation in LPS or septic conditions. 
In LPS or septic conditions, anticoagulant and coagulant balance in the intravascular environment can be disrupted by the disruption of endothelial 
glycocalyx, down-regulation of endothelial thrombomodulin, and decline of plasma anticoagulant proteins such as tissue factor pathway inhibitor (TFPI) 
and antithrombin. Additionally, activated endothelial cells (ECs) and leukocytes release tissue factor (TF) into the bloodstream, triggering intravascular 
coagulation. Neutrophil extracellular traps (NETs) also contribute a plethora of proteins that participate in coagulation. In conditions induced by lipopoly-
saccharide (LPS) or sepsis, fibrinolysis inhibitors such as plasminogen activator inhibitor-1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI) are 
up-regulated, further hindering the fibrinolytic process and potentially leading to disseminated intravascular coagulation (DIC). Recombinant thrombo-
modulin (rTM) and antithrombin gamma (rAT) represent potential therapeutic agents that could rebalance anticoagulant and coagulant activity in LPS 
or septic conditions. Moreover, the upregulation of adhesion factors promotes ECs to secrete von Willebrand factor (vWf ), which in turn recruits platelets 
to aid in the repair of damaged ECs. However, shedding of endothelial protein C receptor (EPCR) from ECs results in impaired conversion of protein C to 
activated protein C (APC), further complicating the coagulation imbalance in these conditions
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Subsequently, the prothrombinase complex converts pro-
thrombin into thrombin, leading to the cleavage of fibrin-
ogen into fibrin [31]. Additionally, Protein S assists TFPI 
in inhibiting factor Xa activity, thereby causing thrombin 
synthesis disorders [93]. In septic or LPS conditions, acti-
vated ECs and leukocytes generate TF within the blood 
vessels [94]. Increased TF promotes pathological platelet-
vessel wall interactions and microvascular thrombosis. 
Platelets adhere to ECs, further enhancing endothelial 
and coagulation activation through various mechanisms, 
leading to the up-regulation of adhesion molecules and 
TF expression [89]. Exposed adhesion molecules on 
the pulmonary endothelium or damaged blood vessels 
prompt ECs to contribute to hemostasis by producing 
von Willebrand factor (vWf), either constitutively or in 
response to chemical or mechanical stimulation from 
storage granules known as Weibel-Palade bodies [95], 
which mediates initial platelet adhesion to areas of vas-
cular injury [31]. This vWf can form prothrombotic ultra-
large vWf multimers at high levels due to the inactivation 
of ADAMTS-13(A Disintegrin And Metalloprotease with 
a ThromboSpondin type 1 motif, member 13) in sep-
tic patients [96, 97]. In a murine model of ALI, follow-
ing LPS administration, TFPI protein expression in lung 
tissue was significantly decreased while TF expression 
was increased [98, 99]. Additionally, in TFPI conditional 
knockout mice, TFPI deficiency worsened sepsis-induced 
ALI/ARDS and reduced survival rates [98]. Several 
reports have demonstrated that TFPI can be used in the 
treatment of Gram-negative bacterial infections, suggest-
ing a therapeutic strategy targeting the coagulation path-
way [100–102], and nebulized or injected recombinant 
human TFPI has been reported to mitigate both pulmo-
nary and systemic coagulation [103, 104]. However, the 
relationship between the efficacy of exogenous TFPI and 
the dosage, as well as any associated side effects, remains 
to be explored.

In addition to the role of TFPI in sepsis-induced ALI/
ARDS, the activated protein C (APC) system is also sig-
nificantly disrupted [105]. TM, expressed in ECs along 
with thrombin, facilitates the thrombin-catalyzed con-
version of protein C to APC [91, 106]. APC limits coagu-
lation amplification by inactivating factors Va and VIIIa 
with support from cofactor protein S [91]. As an impor-
tant physiological anticoagulant pathway, impaired 
APC can also exacerbate coagulation disorders in sep-
sis. Additionally, in a clinical study involving 77 sepsis 
patients in the ICU, protein C levels were measured, and 
severe coagulopathy was found to be associated with 
the levels of anticoagulant markers, including protein 
C [107]. Under LPS conditions, a marked downregula-
tion of endothelial protein C receptor (EPCR) resulted in 
impaired conversion of protein C to APC, as the interac-
tions between EPCR and protein C became compromised 

[108, 109]. Therefore, regulating EPCR levels in ALI/
ARDS may improve prognosis. In a mouse model of 
CLP, isoorientin reduced the shedding of EPCR on the 
EC membrane, thus mitigating lung damage following 
sepsis development [110]. Another study demonstrated 
that APC diminishes the response to bacterial endotoxin 
and trauma-related injuries in the plasma of patients 
with severe sepsis and in animal models of LPS-induced 
sepsis [111]. As such, these findings suggest that inhibit-
ing protein C or addressing EPCR impairment may hold 
therapeutic potential and reduce the risk of coagulation 
disorders. However, further research is required to gain 
a deeper understanding of the underlying mechanisms 
involving protein C, APC, and EPCR in ECs as a treat-
ment approach for sepsis. Interestingly, in a clinical trial 
of APC for the treatment of acute lung injury, the results 
suggested that APC did not improve outcomes from ALI 
[112], which contradicts findings indicating that infusion 
of recombinant APC has a beneficial effect on survival in 
an animal model of ALI induced by sepsis [113].

It is considered that the endogenous coagulation path-
way is activated mainly because of the destruction of the 
endothelial glycocalyx, the downregulation of endothe-
lial TM, the decrease in plasma anticoagulant proteins, 
and the presence of neutrophil extracellular traps (NETs) 
[114]. This activation promotes the generation of throm-
bin and initiates blood clot formation within blood ves-
sels. Due to secondary platelet activation resulting from 
continuous thrombin formation, a significant number 
of platelets are consumed while interacting with the 
endothelial surface, leading to platelet exhaustion and 
prolonged clotting times in 15 to 30% of septic patients 
[108]. In clinical treatment, the use of anticoagulants can 
significantly reduce the risk of thrombosis in small blood 
vessels in lung injuries. Furthermore, when sepsis induces 
ALI, the expression of fibrinolytic inhibitors, including 
plasminogen activator inhibitor-1 [115], is up-regulated, 
which further impedes the dissolution and clearance of 
fibrin, resulting in the formation of microvascular throm-
bosis. Recombinant antithrombin (rAT), as an alternative 
to plasma-derived antithrombin, can trap activated coag-
ulation factors, including thrombin and factor Xa, within 
the septic microcirculation. Therefore, rAT could be a 
therapeutic agent that can restore anticoagulant poten-
tial [91, 116]. During fibrinolysis, thrombolytic agents 
like tissue-type plasminogen activator (t-PA), mainly 
produced in ECs, and urokinase-type plasminogen acti-
vator (u-PA) catalyze the degradation of fibrin within 
clots. Evidence from cultured ECs, experimental animal 
models, and sepsis patients suggests that decreased lev-
els of t-PA and u-PA exacerbate lung injury and disrupt 
the hemostatic balance [117–119]. Thus, coagulopathy 
is also considered a potential characteristic of endothe-
lial injury. Despite abundant evidence demonstrating the 
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interaction between the coagulation system and inflam-
matory response, the systematic interaction between the 
components of the coagulation system and inflammatory 
response remains unclear.

In addition to that, ECs also interact with platelets, 
contributing to the pathogenesis of sepsis-induced ALI/
ARDS. In this condition, endothelial-derived ADP may 
trigger platelet activation, following which receptors 
such as αIIbβ3 integrins [120], CD40L (CD154) and 
P-selectin become highly expressed on the surface of ECs 
[121]. These are important mediators in interactions with 
fibrinogen and other circulating cells in the blood [122]. 
As previously mentioned, vWf is released from the endo-
thelial Weibel-Palade bodies into the bloodstream. In 
vessels with lower shear stress and the presence of vWf, 
erythrocytes tend to aggregate, rolling on and adhering 
to ultralarge vWf multimer strands released from acti-
vated ECs [122]. Subsequently, platelets interact with the 
A1 domain of vWf, resulting in additional platelet bind-
ing and platelet activation [123]. Moreover, various cells 
in the bloodstream adhere to ECs with the assistance of 
vWf from platelets. Neutrophils and monocytes in ves-
sels begin to roll over ultralarge vWf multimer strands 
independently, with neutrophils utilizing neutrophil anti-
gen 3a and monocytes employing P-selectin glycoprotein 
ligand-1 (PSGL-1) for adhesion [120, 124]. Notably, natu-
ral killer (NK) cells in the blood have been observed to 
adhere to vWf-coated surfaces under flow, likely through 
a platelet-dependent mechanism [125].

Overall, these interactions involve various blood cells 
in the bloodstream through EC surface receptors, plate-
lets, and vWf, contributing to EC damage, exacerbation 
of inflammation or thrombosis, and aiding in the removal 
of metabolic waste.

Vasomotor function and angiogenesis function
Vasomotor tone regulation involves a complex interplay 
of endothelial-dependent and endothelial-independent 
factors, with the EC phenotype playing a pivotal role. In 
sepsis, vascular tone dysregulation primarily stems from 
disruptions in the production of nitric oxide (NO), pros-
tacyclin (PGI), and endothelin [126].

Endothelin-1 (ET-1), a potent vasoconstrictive peptide 
released by ECs, exhibits a significant increase in release 
during sepsis-induced ALI/ARDS following EC activa-
tion [127]. In murine sepsis models, sitaxentan, a highly 
selective ET-1 receptor A inhibitor, effectively prevented 
pulmonary inflammation and fibrosis. Elevated plasma 
ET-1 levels have been observed in ARDS patients, corre-
lating with aberrant pulmonary ET-1 metabolism, which 
tends to normalize in recovering patients [128]. Clinical 
research has also shown that reducing LPS-induced ET-1 
levels can protect the diastolic function of pulmonary 

vessels [129]. Thus, targeting ET-1 could be a potential 
strategy to improve endothelial dysfunction [130].

PGI belongs to the eicosanoid group of biologically 
active lipid compounds, which includes primary prosta-
glandins (e.g., PGE2, F2 α, and D2) as well as PGI2 [131]. 
A previous study indicated that the barrier-protective 
effects of PGE2 and PGI on pulmonary ECs are mediated 
through the PKA and Epac/Rap pathways. These mech-
anisms are believed to underlie the protective effects 
of prostaglandins against vascular barrier dysfunction 
induced by agonists in vitro and against lung injury 
caused by mechanical stress in vivo [132].

Animal models of sepsis often display a notable surge in 
nitric oxide (NO) levels during the initial hours of sepsis, 
primarily attributed to heightened expression of tissue-
inducible nitric oxide synthase (iNOS) [133]. Notably, 
NO generated by iNOS can enhance vasoconstriction by 
increasing the levels of endothelin-1 (ET-1) and throm-
boxane A2, effectively inducing vasoconstriction [134]. 
However, the challenges inherent in measuring NO levels 
and the dynamic nature of this process pose difficulties 
in drawing definitive conclusions. Furthermore, insights 
from animal studies suggest that elevated bioavailability 
of NO stemming from iNOS may exacerbate lung injury 
[135]. Several studies have illustrated the involvement of 
both iNOS and endothelial nitric oxide synthase (eNOS) 
in stimulating pulmonary endothelial cells to produce 
significant amounts of NO, resulting in vasoconstriction 
and an escalation in lung injury [136, 137].

The vascular endothelium, known for its remarkable 
plasticity, has the potential for vascular regeneration 
at sites of detachment or rupture of ECs when neces-
sary [138]. It adapts to various functions influenced by 
different tissues’ specific needs, energy requirements, 
and unique conditions 139]. Numerous molecules have 
been identified to be involved in angiogenesis, a pro-
cess essential for the recovery of lung diseases and the 
healing of lung injuries [140]. Therefore, mediating, 
interfering with, or upregulating angiogenesis carries 
significant implications for improving prognosis. Sphin-
gosine 1-phosphate (S1P) [141], a bioactive metabolite 
of sphingomyelin, initiates various signaling cascades 
by binding to its receptors (S1PR1-3) on the surface of 
ECs. S1P primarily stimulates EC proliferation, survival, 
migration, and the formation of capillary lumens through 
its interaction with S1PR1. Additionally, S1P modulates 
angiogenesis by targeting the transcription factor per-
oxisome proliferator-activated receptor γ (PPARγ) and 
forming the S1P/PPARγ/PGC1β complex in ECs [142, 
143]. Another crucial factor in angiogenesis is vascular 
endothelial growth factor (VEGF), which primarily tar-
gets ECs and is essential for vasculogenesis and angio-
genesis [144, 145]. Reduced production of VEGF in ALI/
ARDS may contribute to vascular lesions, as VEGF plays 
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a pivotal role in promoting endothelial survival by inhib-
iting apoptosis [146]. Administration of VEGF within the 
vascular system has been shown to regulate the forma-
tion of new blood vessels, presenting a promising avenue 
for sepsis treatment targeting ECs [147, 148]. Studies 
have indicated that members of the BMP family regulate 
VEGFR2 and Notch signaling pathways and act through 
the TAZ-Hippo signaling pathway to fine-tune angio-
genesis [149]. A recent study employing genetic lineage 
tracing and FACS analysis demonstrated that reactivating 
FoxM1-dependent EC regeneration in ALI mice effec-
tively improved vascular repair, inflammation resolution, 
and survival in elderly sepsis-induced ALI mice. This 
finding aligns with results observed in elderly patients 
with ARDS [150].

Recent early-phase clinical trials have explored the 
potential of stem cell-based therapies for treating sepsis-
induced ALI/ARDS. The endogenous repair mechanism 
for damaged vascular endothelium relies on the prolifera-
tion of local ECs. However, the processes of re-endothe-
lialization and angiogenesis following endothelial injury 
are also influenced by bone marrow-derived endothelial 
progenitor cells (EPCs) [151]. Studies have shown that 
administering EPCs in preclinical sepsis models can lead 
to beneficial effects such as improved vascularity, organ 
function, and reduced mortality [152, 153]. Exosomes 
derived from EPCs contain an abundance of microRNAs-
126-3p (miR-126-3p) and miR-126-5p, whose expression 
is increased in lung tissue when treated with these exo-
somes. Both miR-126-3p and miR-126-5p target genes 
associated with the regulation of endothelial activation 
and inflammation, such as VCAM1 and HMGB1 [154, 
155]. Exosomes deliver miR-126-3p and miR-126-5p to 
ECs, reducing the LPS-induced up-regulation of VCAM1 
and HMGB1. Furthermore, miR-126, through exosome-
mediated targeting of Sprouty-related EVH1 Domain 
1 (SPRED1) and phosphoinositide 3-kinase regulatory 
subunit 2 (PIK3R2), regulates the endothelial response 
to VEGF and its role in endothelial permeability and 
proliferation. As a result, miR-126-3p and miR-126-5p 
secreted by EPCs contribute to vascular endothelial vas-
culogenesis, prevent microvascular dysfunction, and 
potentially improve sepsis outcomes [155]. Therefore, 
miR-126 secreted by EPCs inhibits various targets that 
play critical roles in sepsis-induced ALI/ARDS response 
pathways, including leukocyte trafficking, permeability, 
and cytokine-mediated inflammation. These findings 
provide compelling evidence supporting the concept that 
EPC exosomes may offer therapeutic benefits in sepsis-
induced ALI/ARDS through the transfer of miRNAs, and 
promoting angiogenesis may also contribute to the prog-
nosis of sepsis-induced ALI/ARDS to a certain extent 
and has shown promise in clinical research [156].

Imbalance of oxidative stress
Oxidative stress is known to play a significant role in 
the progression of sepsis-induced ALI/ARDS [11, 157]. 
Under normal physiological conditions, ROS are essen-
tial for various cellular functions, including cell signaling, 
post-translational protein processing, host defense, gene 
expression regulation, and cell differentiation. However, 
excessive ROS production can result in endothelial dys-
function and EC death. The dysfunction and death of 
pulmonary vascular ECs can result in increased vascular 
permeability and even vascular rupture. The NOX family 
of proteins is the primary enzymatic source of ROS, and 
within ECs, four NOX isoforms are expressed, namely 
NOX1, NOX2, NOX4 and NOX5 [158]. The activation of 
NOX leads to EC dysfunction by generating ROS, includ-
ing superoxide, hydroxyl radicals, and peroxynitrite 
[159]. Jiang J. et al. demonstrated that NOX4 (NADPH 
oxidase) activation via the CaMKII ERK1/2 / MLCK 
pathway plays a pivotal role in REDOX-sensitive activa-
tion of ECs in CLP mice [159]. Importantly, p22phox, the 
only membrane-bound subunit, was found to be essen-
tial for the stability and activation of NOX1, NOX2, and 
NOX4 [11, 158]. Thus, an imbalance of p22phox beyond 
the self-regulation range corresponds to changes in oxi-
dative stress downstream of the NOX family. In the 
LPS-induced ALI mouse model, LPS promotes NOX2-
mediated ROS production in pulmonary vascular ECs 
of mice by interacting with TLR4. Additionally, ROS can 
induce various forms of programmed cell death in ECs, 
such as pyroptosis, parthanatos, and ferroptosis. Notably, 
ROS serve as upstream signals for the activation of the 
NLRP3 inflammasome, which upregulates the expression 
of NLRP3, pro-caspase-1, and pro-IL-1β, thereby pro-
moting the assembly and activation of the NLRP3 inflam-
masome [160, 161]. Excessive accumulation of ROS can 
cause DNA single- and double-strand breaks, leading 
to overactivation of poly (ADP-ribose) polymerase 1 
(PARP-1) and accumulation of poly (ADP-ribose) (PAR), 
depleting substantial amounts of NAD+ [162]. Further-
more, the translocation of PAR from the nucleus to the 
mitochondria induces the release of apoptosis-inducing 
factor (AIF) from the mitochondria, forming a complex 
with macrophage migration inhibitory factor (MIF) in 
the cytoplasm [163]. This process, including nuclear 
translocation of the AIF/MIF complex, leads to chro-
matin condensation and DNA fragmentation, ultimately 
resulting in EC death [164].

During ALI, various oxidases are activated through dif-
ferent pathways, contributing to oxidative stress. These 
oxidases include NO synthase (NOS) [165], Xanthine 
oxidase (XO) [166] and Cytochrome P450 (CYP) [167]. 
Since many oxidases are present in endothelial mitochon-
dria, and mitochondria are the primary site of REDOX 
reactions, oxidative stress can lead to mitochondrial 
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damage. Several pathways are involved in this process. 
For instance, eNOS produces NO (eNO), which can react 
with O2− to form highly reactive peroxynitrite (ONOO−). 
This increased oxidative and nitrosative stress can acti-
vate the nitroprotein RhoA and induce the uncoupling 
and translocation of eNOS to mitochondria, leading 
to endothelial barrier dysfunction and lung injury [137, 
168]. Nuclear factor erythroid 2-related factor 2 (Nrf2), 
possessing antioxidative potential, is a transcription fac-
tor that interacts with multiple signaling pathways and 
regulates the activity of various oxidases (NOX, NOS, 
XO, and CYP) associated with inflammation and apop-
tosis [169]. Nrf2 plays a pivotal role in ALI by exerting 
antioxidant and anti-inflammatory functions. Marika et 
al. investigated the potential of cashew nuts, a prominent 
source of polyphenols in the global diet, to alleviate sep-
sis-induced ALI/ARDS through the Nrf2 signaling path-
way [170]. Additionally, Hong et al. demonstrated that 
Hydnocarpin D attenuates LPS-induced ALI via Nrf2-
associated pathways, indicating that the Nrf2-associated 
pathway may inhibit oxidative stress and the inflam-
matory response [171]. Similarly, Lv et al. showed that 
xanthohumol markedly attenuated the oxidative stress 
response and ameliorated LPS-induced ALI in mice by 
inducing the AMPK/GSK3beta-Nrf2 signaling axis in 
vivo [172]. Both mitochondrial damage and nuclear chro-
mosomal damage in ECs, as well as alterations in enzyme 

levels within ECs, can result in varying degrees of EC 
dysfunction, which can disrupt normal mitochondrial 
oxidative metabolism functions and lead to severe EC 
damage and detachment (Fig. 3).

Interaction between endothelial cells and immune 
cells in sepsis-induced ALI/ARDS
During the progression of sepsis-induced ALI/ARDS, 
there are concurrent and interwoven proinflammatory 
and anti-inflammatory responses. A pivotal aspect of 
sepsis-induced ALI/ARDS lies in the interaction between 
ECs and various inflammatory cells, while cytokines 
and inflammatory factors play indispensable roles in 
this cascade. This interaction between cells and effec-
tor molecules stands as the primary pathophysiologi-
cal alteration in sepsis-induced ALI/ARDS [173]. The 
inflammation observed in sepsis-induced ALI/ARDS can 
be initiated through both exogenous and endogenous 
pathways. Exogenously, pathways activated by LPS trig-
ger inflammatory responses by engaging Toll-like recep-
tors (TLRs). The LPS-mediated TLR4 and caspase-11 
(or human caspase-4/5) cascade can elevate the produc-
tion of proinflammatory/anti-inflammatory mediators, 
induce pyroptotic cell death and lead to immune dys-
function. Conversely, endogenous pathways primarily 
involve danger signal molecules, known as damage-asso-
ciated molecular patterns (DAMPs), which are released 

Fig. 3 Oxidative stress response in ECs. Reactive oxygen species (ROS) within ECs primarily originate from mitochondria, NADPH oxidases (NOXs), 
endothelial nitric oxide synthase (eNOS) uncoupling, and xanthine oxidase (XO). The generation of ROS through various pathways results in the upregula-
tion of ROS expression in ECs, leading to mechanical cell death and disruption of intercellular junctions
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by local inflammatory cells or dying cells. These DAMPs 
recruit and activate immune cells by binding to various 
receptors, including IL-6, IL-10, and IL-33, among oth-
ers [174]. As previously mentioned, disruption of the 
endothelial barrier leads to excessive leakage of protein-
rich fluid, diverse blood cells, and inflammatory cells into 
the interstitium and alveoli. Consequently, white blood 
cells migrate along ECs, triggering neutrophil activation, 
which, along with macrophages and various inflamma-
tory cells, releases a plethora of substances within the 
lung, thereby exacerbating inflammation. Furthermore, 
these interactions can serve as biomarkers for sepsis-
induced ALI/ARDS [175, 176] (Table 1), including intri-
cate interactions between ECs and various cell types, 
representing a focal point of research efforts. Thus, tar-
geting these interactions holds promise for the treatment 
or amelioration of sepsis-induced ALI/ARDS.

Interaction between endothelial cells and leukocytes
In ALI, various immune cells, including lymphocytes and 
macrophages, initiate a potent inflammatory response 
that exacerbates lung injury upon interaction with ECs. 
This interplay between the endothelium and leukocytes 
is a frequent occurrence in ALI. Leukocyte-generated 
thrombin can activate PARs found on both ECs and 
leukocytes, prompting ECs to release inflammatory fac-
tors such as IL-6. Thrombin’s effect on ECs increases the 
expression of selectin E and P on the EC surface, thereby 
augmenting leukocyte adhesion to ECs and facilitating 
leukocyte exudation and chemotaxis [199]. Conversely, 
inflammatory factors and chemokines can attract a sub-
stantial number of inflammatory cells to accumulate at 
the site of inflammation, which produce numerous cyto-
kines within the inflamed area, culminating in a cytokine 
storm.

Interaction of ECs with neutrophil
Neutrophils have long been recognized for their pivotal 
role as immune effector cells in the pathogenesis, pro-
gression, and resolution of various diseases, including 
ALI/ARDS [200]. Recent research has elucidated the sig-
nificant contribution of extracellular histones in promot-
ing neutrophil adhesion and subsequent activation. This 
cascade begins with histones stimulating the pulmonary 
endothelium via TLR signaling, leading to P-selectin 
translocation and vWf release [201]. Concurrently, intra-
cellular histones are released into the extracellular space, 
where they serve as inflammatory mediators in cells, tis-
sues, and organs.

IL-33, recently discovered to be expressed in ECs, 
epithelial cells, and fibroblasts, plays a pivotal role in 
mediating crucial interactions (Fig.  4) [202]. IL-33 tar-
gets various immune cells, including eosinophils, mast 
cells, and macrophages. Both isoforms of IL-33, namely 
proIL-33 and mtrill-33, serve as immune adjuvants capa-
ble of eliciting substantial Th1 CD4+ and CD8+ T cell 
responses. This stimulation results in the production of 
Th2-related cytokines, specifically IL-4, IL-5, and IL-13, 
leading to histopathological alterations in the lungs. 
IL-33 also induces the generation of proinflammatory 
cytokines and chemokines (such as IL-6, IL-1β, TNF-
α, IL-8, IL-13, CCL1, and CXCL8) by human mast cells 
and cooperates with IgE to enhance cytokine production 
[203, 204]. Its receptor, ST2, encodes a soluble secretory 
ST2 (sST2), which functions as a component in IL-33 
signaling [205]. Human basophils and ECs express ST2 
receptors at high levels and respond to IL-33 by produc-
ing increased levels of IL-1β, IL-4, IL-5, IL-6, IL-8, IL-13, 
and granulocyte-macrophage colony-stimulating factor 
(GM-CSF) [206, 207]. IL-33 stimulates the production of 
nitric oxide (NO) in ECs through the ST2/TRAF6-Akt-
eNOS signaling pathway, thereby promoting angiogenesis 

Table 1 Biomarkers of sepsis-induced ALI/ARDS
Biomarkers Detection 

object
Change Reference

Receptor for advanced 
glycation
end products (RAGE)

Plasma and 
alveolar fluid 
clearance

↑  [177]

Specific
surfactant proteins (SP)

Pulmonary 
edema fluid; 
plasma

SP-D↓; 
SP-A↑

 [178]

Membrane glycoprotein KL6 BALF and 
plasma

↑  [179]

Club cell secretory protein 
(CCSP)

Plasma ↑  [180, 181]

Soluble intercellular adhesion 
molecule-1 (sICAM-1)

Plasma and 
edema fluid

↑  [182]

Angiopoietin1 (Ang-1) and 
angiopoietin-2 (Ang-2)

Plasma ↑  
[183–185]

E-selectin Plasma ↑  [186]
IL-1β, TNFα, IL-8 and IL-6 Plasma ↑  [187, 188]
IL-10 Plasma ↓  [188]
High mobility group box 
nuclear protein (HMGB) 1

Plasma ↑  [189]

Lipopolysaccharide-binding 
protein (LBP)

Plasma ↑  [190]

Plasminogen activator inhibi-
tor (PAI-1)

BALF ↑  [191]

Thrombomodulin (TM) Pulmonary 
edema fluid 
and Plasma

↑  [192]

Protein C Plasma ↓  [193]
Keratinocyte growth factor 
(KGF) and hepatocyte growth 
factor (HGF)

BALF ↓  [194, 195]

Vascular endothelial growth 
factor(VEGF)

Epithelial 
lining fluid

↑  [196]

KL-6 Plasma ↑  [197, 198]
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and increasing vascular permeability [208]. Thus, the role 
of cell-mediated interactions facilitated by cytokines can-
not be underestimated. In normal physiological condi-
tions, endogenous IL-33 is consistently expressed within 
the nucleus, typically binding to chromatin by interacting 
with histone H2A/H2B. However, when tissue damage, 
mechanical stress (such as necroptosis or cellular stress), 
or endothelial injury, including damage or detachment, 
occurs, the expression of IL-33 is upregulated. Conse-
quently, a significant amount of IL-33 is released into 
the extracellular space [209]. Subsequently, IL-33 in ECs 
binds to ST2, which is widely distributed on the sur-
faces of ECs and inflammatory cells, initiating the IL-33/
ST2 signaling pathway [210]. The binding of IL-33 to 

ST2 triggers downstream signaling events, including the 
activation of NF-κB and MAP kinases (ERK, p38, and 
JNK). Activation of the NF-κB signaling pathway ampli-
fies the pro-inflammatory and pro-angiogenic responses 
of ECs by elevating the expression of adhesion molecules 
like VCAM-1, platelet EC adhesion molecule-1, and the 
secretion of cytokines such as IL-6, IL-8, and VEGF [92].

As mentioned above, ECs can activate neutrophils, 
indirectly leading to an increase in the release of NETs, 
which can enhance endothelial permeability and, con-
versely, promote neutrophil transformation into pro-
inflammatory and procoagulant phenotypes, indicating 
that neutrophils and NETs promote the pro-inflam-
matory and pro-angiogenic processes of ECs, further 

Fig. 4 The cascade of effects resulting from the release of IL-33 under the action of endothelial injury and other factors. Initially expressed with-
in the nucleus, endogenous IL-33 expression is upregulated by endothelial injury and other stimuli, leading to the release of a significant amount of IL-33 
outside the cell. Extracellular IL-33 binds to its receptor ST2, initiating downstream signaling events such as NF-κB and MAP kinase activation. Damaged 
endothelial cells promote the transition of neutrophils into pro-inflammatory and pro-coagulant phenotypes. Neutrophils release neutrophil extracellular 
traps (NETs), which further exacerbate neutrophil phenotypic transformation and enhance endothelial permeability through the MPO/H2O2-dependent 
activation of the TLR4/NF-κB signaling pathway. IL-33 also acts on CD8+ T cells and CD4+ T cells, leading to increased expression of IL-4, IL-5, and IL-13. 
Additionally, IL-33 stimulates mast cells, resulting in increased expression of IL-6, IL-1, IL-8, IL-13, CCL1, CXCL8, and TNF-α. Furthermore, IL-33 induces over-
expression of MMP2 and MMP9 in macrophages
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exacerbating immune system dysfunction. Wojciak-Sto-
thard et al. demonstrated that NETs could induce pro-
inflammatory and pro-angiogenic responses in human 
pulmonary artery ECs via MPO/H2O2-dependent acti-
vation of the Toll-like receptor 4 (TLR4)/NF-κB sig-
naling pathway [211]. To reduce NETs-mediated lung 
damage and inflammation, DNase is commonly used 
in preclinical ALI models due to its capacity to degrade 
the NET DNA scaffold. However, it is noteworthy that 
some research has indicated that DNase treatment may 
lead to increased systemic bacterial burden and reduced 
survival rates [212]. In a study conducted by Lafrançais 
et al., higher levels of NETs were observed in ARDS 
patients with infectious origins, and these levels were 
correlated with worse clinical outcomes. Furthermore, 
their research revealed that NETs release exacerbated 
ALI symptoms, but this effect could be alleviated through 
the administration of DNase. Consequently, DNase 
presents a potential target for disrupting NET-medi-
ated interactions between ECs and neutrophils [213]. 
However, to safely leverage these observations, further 
investigation is required to elucidate the pathways that 
regulate the equilibrium between neutrophil activation 
and desensitization.

Interaction of ECs with macrophages
At various pathological stages, macrophages undergo 
phenotypic changes regulated by factors such as sup-
pressor of cytokine signaling (SOCS) 1/SOCS3 and inter-
feron regulatory factor (IRF) 4/IRF5, resulting in distinct 
functional roles [214]. Initially, macrophages exhibit 
a predominantly pro-inflammatory M1 phenotype, 
which is involved in defense and marked by the release 
of numerous pro-inflammatory mediators. However, as 
the disease progresses, macrophages transition towards 
the anti-inflammatory M2 phenotype, participating in 
tissue remodeling and potentially exacerbating tissue 
fibrosis to some extent [214, 215]. A study published in 
2008 reported that alveolar macrophages (AMs) could 
directly enhance the pulmonary microvascular endothe-
lium through iNOS [216]. Recently, research has dem-
onstrated that the regulator of G protein signaling-1 
(RGS1), a key member of the RGS family [217], co-reg-
ulates the immunophenotype of the AMs subpopulation 
through PLC-IP3R signal-dependent intracellular Ca2+ 
responses [218]. Moreover, evidence confirms that M2 
macrophages release anti-inflammatory and pro-growth 
cytokines, both in vitro and in vivo, to accelerate the 
proliferation of lung ECs and improve survival in mice 
with sepsis-induced ALI/ARDS [219]. Pathologically, 
elevated IL-33 activates signal transducers and activators 
of transcription 3 (STAT3) in AMs, leading to increased 
expression of MMP2 and MMP9, which further dam-
ages alveolar ECs and exacerbates the disease [220]. 

Additionally, the VEGF-C/VEGFR-3 signaling in macro-
phages contributes to ameliorating ALI/ARDS through 
multiple functions, including increased production of 
anti-inflammatory cytokines and enhanced efferocytosis 
[221]. Nonetheless, the mechanisms governing the inter-
action between macrophages and ECs remain unclear, 
and further research is needed to elucidate how various 
macrophage phenotypes interact with ECs at different 
locations within the lung. Nevertheless, regulating the 
function of macrophages holds promise as a therapeutic 
strategy against ALI/ARDS.

Interaction between endothelial cells and stromal 
cells in sepsis-induced ALI/ARDS
During the pathogenesis of ALI and ARDS, there is 
ongoing interaction between pulmonary capillary endo-
thelium and lung stromal cells, including fibroblasts 
and epithelial cells. Notably, the interplay between lung 
epithelial cells and ECs significantly impacts the disease 
progression. These interactions not only influence the 
phenotype of ECs but also affect the differentiation and 
secretion function of other cell types.

The interaction between endothelial cells and alveolar 
epithelial cells
Alveolar capillary ECs are intimately associated with 
alveolar epithelial cells, making epithelial-endothelial 
crosstalk crucial in sepsis-induced ALI/ARDS. Dam-
age to the alveolar epithelial-endothelial barrier, where 
gas exchange occurs in the lung, leads to the accumula-
tion of proteinaceous fluid filled with proteins and cells 
in the alveolar space. This disrupts alveolar gas exchange, 
resulting in severe lung dysfunction [222–224]. Patho-
logical specimens from ALI/ARDS patients often reveal 
diffuse alveolar damage characterized by alterations in 
endothelial and epithelial cells [225]. Pulmonary fibrosis 
is a common complication of primary pulmonary ALI/
ARDS [20]. Its pathogenesis has transitioned from being 
driven by fibroblasts to being governed by epithelial cells, 
involving intricate crosstalk among alveolar epithelial 
cells, fibroblasts, immune cells, and ECs [226]. Single-cell 
RNA sequencing data has confirmed that alveolar epi-
thelial cells serve as the source of fibroblasts and myofi-
broblasts in idiopathic pulmonary fibrosis. Dysregulated 
epithelial cells interact with ECs through various sig-
naling mechanisms, activating fibroblasts and myofi-
broblasts. Additionally, alveolar epithelial cells secrete 
senescence-associated secretory phenotypes, further 
promoting fibrosis [227]. Wang et al. demonstrated that 
alveolar epithelial cells protect ECs from septic hyper-
permeability by secreting a variety of anti-inflammatory 
and antimicrobial factors [228]. Furthermore, alveolar 
epithelial cells contribute to the pathology of sepsis-
induced ALI through ferroptosis induced by neutrophil 
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extracellular traps (NETs), exacerbating damage to the 
alveolar endothelium [229]. The interaction between epi-
thelial cells and ECs is notable when activated by IL-33, 
resulting in increased production of IL-6 and IL-8 [230], 
which upregulates HIF-1α and VEGF expression in vas-
cular ECs [231], causing additional damage to the endo-
thelium and worsening ALI/ARDS. Hence, the scientific 
and potential clinical therapeutic importance of epithe-
lial-endothelial crosstalk in maintaining alveolar integ-
rity in ALI/ARDS is evident. Future studies will further 
define the soluble factor(s) responsible for pulmonary EC 
protection and explore the therapeutic potential of this 
epithelial-endothelial interaction.

The interaction between endothelial cells and fibroblasts
In the progression of pulmonary fibrosis in ALI/ARDS, 
fibroblasts can undergo activation into myofibroblasts, 
which persist in cases of fibrosis [232]. Besides endoge-
nous tissue fibroblasts, myofibroblasts can also originate 
from ECs through endothelial-mesenchymal transition 
[233]. A significant aspect of the initial injury in pulmo-
nary fibrosis involves the creation of a profibrotic envi-
ronment due to repetitive micro-injuries. Within this 
milieu, various factors, including cytokines, chemokines, 
and growth factors, coordinate the recruitment of fibro-
blasts, contributing to fibrosis and lung injury [234, 235]. 
Notably, VEGF-A, which is abundantly secreted by ECs, 
alveolar epithelial cells, and B cells in the lung, plays 
a pivotal role in maintaining alveolar integrity. Recent 
evidence suggests that VEGF-A can induce the migra-
tion and activation of fibroblasts, thereby contributing to 
pulmonary fibrosis [235]. However, conflicting evidence 
exists regarding the role of VEGF-A in pulmonary fibro-
sis, with some studies indicating its protective role when 
secreted by type II alveolar epithelial cells [236, 237]. The 
specific mechanism of VEGF-A in the progression of 
fibrosis and ALI/ARDS as a whole remains to be further 
confirmed. In addition, scRNA-seq data from rats with 
pulmonary fibrosis have highlighted the significant role 
of ECs in stimulating fibroblast proliferation [238]. Pul-
monary ECs are also known to secrete fibroblast growth 
factor (FGF) [239], which has been shown to promote the 
division and proliferation of fibroblasts. FGFs are crucial 
for the development and repair of lung tissue following 
ALI/ARDS [239]. In a mouse model of LPS-induced ALI, 
FGF1 has been found to effectively reduce inflammation 
and oxidative stress during lung injury, exerting a pro-
tective role [240]. Similarly, FGF4 has shown protective 
effects against LPS-induced lung injury both in vivo and 
in vitro, as evidenced by reduced lung tissue damage, 
apoptosis, and inflammation following treatment with 
recombinant FGF4 [241]. Additionally, FGF10 has been 
demonstrated to play a protective role in LPS-induced 
ALI by increasing the population of mesenchymal stem 

cells (MSCs) [242]. Notably, certain basal cells, includ-
ing fibroblasts, rely on FGF-associated signaling for their 
survival, proliferation, and differentiation, presenting 
potential therapeutic targets for lung repair [243]. How-
ever, further research is needed to confirm the effects 
of these findings in clinical settings. Moreover, vascular 
and pulmonary connective tissue growth factor (CTGF) 
induces fibroblast differentiation and promotes pulmo-
nary fibrosis through various cell signaling pathways, 
such as integrin-dependent pathways [244].

Thus, the interaction between ECs and lung stromal 
cells plays a crucial role in shaping the progression of 
the entire disease process [245]. However, the molecu-
lar mechanisms underlying this interaction remain 
unclear. Therefore, gaining a detailed understanding of 
the intercellular crosstalk between ECs and lung stromal 
cells holds great significance for advancing treatment 
strategies.

The endothelium as a therapeutic target in sepsis-
induced ALI/ARDS
While preclinical studies in animal models of ALI have 
been conducted for decades, translating these findings 
into effective treatments or targeted drug therapies for 
human ARDS remains challenging. However, the advent 
of single-cell omics technology [246, 247] has facilitated 
the identification of numerous biomarkers for the prog-
nosis of ARDS in humans (Table  1). These biomarkers 
offer valuable tools for diagnosing the condition and 
assessing its prognosis, thereby enhancing our ability to 
manage the disease effectively.

EC dysfunction encompasses a multitude of signaling 
pathways regulated by diverse intracellular and extra-
cellular molecules, including second messengers [248]. 
Thus, elucidating the molecular mechanisms underlying 
these pathways in sepsis-induced ALI/ARDS holds prom-
ise for identifying novel therapeutic targets and insights 
into clinical management, with the potential to modify 
disease progression. Notably, the NF-κB pathway serves 
as a prominent example [67, 69], modulating adhesion, 
permeability, and inflammatory responses. Consequently, 
targeting the NF-κB pathway holds significant potential 
for alleviating the diverse symptoms associated with sep-
sis-induced ALI/ARDS. It is worth noting that the impact 
of NF-κB pathway inhibition can vary depending on the 
stage of disease progression. While NF-κB inhibitors 
may exert a protective effect when administered before 
the peak of injury in ALI animal models, their effects can 
differ during the regression phase or late progression of 
the disease. In these later stages, NF-κB inhibition may 
exacerbate endothelial barrier damage, increase endo-
thelial cell apoptosis, and potentially delay tissue repair 
[240, 249–252]. Millar et al. have extensively reviewed 
this dual role of targeting the NF-κB pathway in ARDS 
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treatment [70], providing comprehensive insights into 
this complex topic. Therefore, it is essential to consider 
the timing of NF-κB inhibition in the context of disease 
progression to optimize therapeutic outcomes. Addi-
tionally, the MAPK pathway plays a significant role in 
sepsis-induced ALI/ARDS [50], influencing processes 
such as endothelial cell proliferation, growth, and apop-
tosis. Interaction between the NF-κB/MAPK-mediated 
signaling pathway, EC-epidermal growth factor recep-
tor (EGFR), tumor necrosis factor receptor 1 (TNFR1)-
mediated inflammation, and receptor-interacting protein 
3 (RIP 3)-dependent necroptosis regulation has been 
demonstrated in ALI [15]. Recent studies have shown 
that intervention with Yupingfengsan exhibited thera-
peutic effects on LPS-induced ALI mice by inhibiting 
the activation of NLRP3 inflammasome and the MAPK 
signaling pathway [253], which highlights the potential of 
drugs targeting MAPK in ARDS treatment, underscoring 
the significance of these signaling pathways in the patho-
genesis of ALI/ARDS. Moreover, the Notch pathway has 
emerged as another common player in ALI/ARDS, influ-
encing various immune and non-immune cells by regu-
lating cell proliferation. Activation of the Notch signaling 
pathway can promote inflammation through classically 
activated macrophages (M1), while its inhibition can sup-
press inflammation by activating alternatively activated 
macrophages (M2) [254]. In septic ALI/ARDS, the Notch 
pathway may modulate inflammatory responses through 
macrophages, activate Dcreg to inhibit inflammation and 
contribute to pulmonary development, offering potential 
therapeutic strategies for ALI/ARDS treatment [255]. 
An increasing number of drugs targeting these signaling 
pathways have been developed to improve sepsis-induced 
ALI/ARDS [70, 256, 257]. Dis et al. have summarized the 
basic signaling pathways of sepsis-induced ALI/ARDS 
and discussed treatment strategies [68]. However, genetic 
diagnosis and omics research of human ARDS are still 
in the early stages. It is hoped that future research will 
elucidate the interplay between proteins, genes, and sig-
naling pathways, leading to the development of specific 
treatments. Therefore, deeper research into understand-
ing these typical signaling pathways could be crucial for 
comprehending and predicting ALI/ARDS.

The identification of targets within typical cell signaling 
pathways for treatment has shown promising results in 
improving patient outcomes. Additionally, the emergence 
of MSCs and their exosomes, as mentioned previously, 
offers a broader solution to address the current treat-
ment dilemma. Liang et al. made a detailed summary of 
the use of MSCs and their exosomes for intervention in 
the treatment of ALI/ARDS [258]. Liang et al. highlighted 
that MSCs exert their therapeutic effects through para-
crine mechanisms, leading to increased expression of 
anti-inflammatory factors and reduction of inflammatory 

responses in patients [258]. Furthermore, MSCs have 
been shown to mitigate damage to the endothelial and 
epithelial barriers, thereby protecting lung function, as 
evidenced in clinical trials [259, 260]. Meanwhile, Extra-
cellular vesicles (EVs) secreted by MSCs have emerged as 
a promising treatment modality for ALI/ARDS, attract-
ing considerable attention. Advances in EV character-
ization methods have facilitated their study [261]. EVs 
use a cell-free therapeutic approach Moreover, MSC-
derived EVs can transfer cellular contents to recipient 
cells, thereby reducing inflammation and oxidative stress 
and ultimately alleviating lung injury [262]. Additionally, 
the increase in EVs in human endothelial cells may pro-
mote angiogenesis and regulate immune responses [258]. 
Despite the promise of this cell-free approach, challenges 
persist in the field, necessitating the development of 
treatments that meet rigorous criteria.

Conclusion
In this review, we comprehensively discussed recent 
research progress regarding the role of ECs in sepsis-
induced ALI/ARDS, as well as their interactions with 
other cell types. Recent literature emphasizes the piv-
otal roles played by ECs in the pathogenesis of ALI/
ARDS triggered by sepsis, posing a significant challenge 
to the clinical management of septic patients. EC dys-
function in LPS-induced ALI/ARDS contributes to gly-
cocalyx degradation, inflammation, oxidative stress, and 
other pathological processes through various pathways, 
thereby exacerbating disease progression and impacting 
prognosis. Moving forward, it is essential to adopt mech-
anistically focused trial designs that prioritize organ and 
cellular function characteristics to evaluate the poten-
tial benefits of protective strategies targeting ECs in the 
clinical management of sepsis. Additionally, ongoing 
development of diagnostic methods capable of assessing 
EC function in clinical settings is urgently needed. Such 
methods would complement therapeutic interventions 
aimed at strengthening and restoring endothelial func-
tion, particularly in sepsis cases, facilitating the identifi-
cation of more effective agents capable of targeting the 
endothelium.
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