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Abstract 

This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton 
and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the patho‑
genesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate inter‑
play of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, espe‑
cially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association 
between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery‑Dreifuss Muscular 
Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive 
examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphol‑
ogy alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC 
complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implica‑
tions of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining 
cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin 
gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting car‑
diac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear‑
cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed 
at addressing genetic muscle disorders.

Keywords LINC complex, Nesprin, Muscular diseases, Nuclear‑cytoskeletal interactions, Molecular mechanisms, 
Therapeutic interventions

Introduction
The nucleus, a central organelle within the cell, orches-
trates subcellular organization beyond its traditional 
role as a repository of genetic material [1, 2]. Its dynamic 
interplay with diverse organelles is facilitated by the 
cytoskeleton, establishing critical connections crucial for 
spatial organization [3–5]. While epithelial cells typically 
position the nucleus proximal to the basement membrane 
via microtubule-driven mechanisms, fibroblasts rely on 
actin filaments for nuclear localization [6, 7]. Remark-
ably, in skeletal and cardiac muscle cells, the nucleus acts 
as a Microtubule Organizing Center (MTOC), signifi-
cantly impacting cellular architecture and microtubule 
arrangement during muscle development. Mechanisms 
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governing nuclear positioning can be classified into two 
distinct types [8, 9]. The first operates independently of 
direct cytoskeleton-nuclear envelope interactions, poten-
tially restricting specific cytoplasmic elements’ access 
to the perinuclear region. This mechanism indirectly 
influences nuclear positioning by modulating local fiber 
density or inducing movement of other cytoplasmic 
components [10]. Conversely, the second mechanism 
relies on the physical coupling between the cytoskel-
eton and the nuclear envelope, exerting direct forces on 
the nucleus. The presence of the LINC complex further 
complicates this physical linkage [11, 12]. Responsible 
for establishing a stable yet dynamic connection between 
the nuclear membrane and cytoskeleton, the LINC com-
plex plays a pivotal role in transmitting forces and signals 
crucial for nuclear shaping, positioning, and centrosome-
nucleus association. Its significance extends to funda-
mental cellular processes, including DNA repair, nuclear 
envelope organization, cell migration, and chromosomal 
dynamics during meiosis [13].

The LINC complex stands as a cornerstone in cellular 
mechanics, orchestrating essential connections between 
the nuclear envelope and the cytoskeleton. Particularly, 
Nesprin proteins, integral components of the LINC com-
plex, emerge as pivotal mediators in this intricate inter-
play, influencing cellular morphology, structure, and 
mechanical stability [14]. Understanding their role is par-
amount, especially in mechanically sensitive tissues like 
cardiac and striated muscles, where disruptions in the 
LINC complex are implicated in various muscular dis-
orders [15, 16]. This review delves into the multifaceted 
functions of Nesprin proteins within the LINC complex, 
elucidating their involvement in muscular diseases such 
as DCM and EDMD, and exploring novel therapeutic 
strategies aimed at rectifying Nesprin-related patholo-
gies. Through a comprehensive examination, we aim to 
shed light on the intricate molecular mechanisms under-
lying nuclear-cytoskeletal interactions and pave the way 
for innovative therapeutic interventions in genetic mus-
cle disorders.

Role of the LINC complex in cellular mechanics 
and muscle function
The LINC complex stands as a pivotal mediator of 
mechanical coupling between the nuclear membrane 
and the cytoskeleton, crucial for sensing and regulating 
mechanical stimuli while maintaining cellular morphol-
ogy, structure, and mechanical stability [14, 17]. Com-
posed of SUN (Sad1/UNC84) and KASH (Klarsicht/
ANC-1/Syne) proteins, the mammalian genome encodes 
at least five SUN proteins (SUN1-5) and six KASH pro-
teins (Nesprin1-4, KASH5, LRMP), forming the core con-
stituents of the LINC complex. These proteins establish 

stable connections between the nuclear membrane and 
the cytoskeleton, facilitating mechanical transmission 
between the nucleus and the cytoskeleton, thereby influ-
encing cellular polarity, migration, mechanosensing, 
and gene expression [18] (Fig.  1). The adapter proteins 
within the LINC complex, including Nesprin, SUN, and 
lamins, exhibit abundant expression in cardiac and skel-
etal muscles. Nesprin, harboring a KASH domain within 
the outer nuclear membrane (ONM), directly interfaces 
with the cytoskeleton (including microtubules, actin, and 
intermediate filaments) in the cytoplasm. Concurrently, 
Nesprin interacts with SUN proteins, anchoring itself 
to the dense nuclear lamina beneath the inner nuclear 
membrane (INM) [19]. This intricate network of physical 
connections among the cytoskeleton, LINC complex, and 
nuclear lamina establishes a robust structural foundation 
for the direct transmission of extracellular forces into the 
cell nucleus, thereby allowing mechanical signals to mod-
ulate gene transcription [17] (Fig. 2A).

The importance of the LINC complex extends across 
diverse model organisms [20–22]. Studies in Caenorhab-
ditis elegans have elucidated the critical function of actin-
associated nucleus component 1 (ANC-1), a homolog 
of Nesprin-1/2, in actin-mediated nuclear positioning 
within muscle cells. Conversely, mutations in the SUN1 
homolog UNC-84 disrupt both nuclear migration and 
anchorage [23]. Further investigations in mice and human 
fibroblasts have unveiled that abnormalities in the LINC 
complex or the absence of specific Nesprin/SUN proteins 
lead to defects in centrosome attachment to the nucleus. 
Notably, cells lacking the LINC complex exhibit impaired 
polarization responses in wound healing assays, thereby 
compromising nuclear repositioning and centrosome 
movement [24]. Moreover, endothelial cells with reduced 
Nesprin-1 struggle to reorient under cyclic strain, conse-
quently impacting cell migration. Meanwhile, Nesprin-2 
plays a crucial role in facilitating rearward nuclear move-
ment in fibroblasts, a process preceding polarization and 
migration [25]. Disruption of the LINC complex poses 
a significant hurdle to cell polarization, with fibroblasts 
harboring defects in nuclear lamin A/C struggling with 
nuclear polarization and migration [26]. Engineered 
mice with genetic mutations in the LINC complex or 
lamin manifest aberrant synaptic nuclear positioning in 
skeletal muscle neuromuscular junctions [15, 27]. These 
findings address a fundamental inquiry: How do nuclear 
membrane proteins influence cellular structure and func-
tionality? The orchestrated movement of nuclei during 
cell migration corresponds with cytoskeletal remodeling, 
ensuring the nucleus’s stability amidst a dynamic cel-
lular milieu. Synaptic nuclei migration toward the cell 
periphery in muscle cells necessitates effective cytoskel-
etal forces to maneuver the nucleus. Firm anchorage to 
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the cytoskeleton proves pivotal in maintaining nucleus 
stability and averting random displacement [28–30]. 
Pioneering studies employing controlled mechanical 
forces on adherent fibroblasts have revealed the intricate 
mechanism of force transmission within cells. Disrupted 
LINC complexes exhibit diminished nuclear displace-
ment under mechanical strain, underscoring the pivotal 
role of this complex in transmitting forces between the 
nucleus and cytoskeleton [31, 32]. Such transmission sig-
nificantly impacts cell migration and polarization by reg-
ulating nuclear positioning and movement. The integrity 
of the LINC complex emerges as crucial for maintain-
ing cellular mechanical stability and facilitating adap-
tive responses to environmental stimuli [33]. A deeper 
understanding of these mechanisms offers insights into 
intracellular mechanical signal transduction and unveils 
potential therapeutic strategies for associated diseases.

The significance of the LINC complex is particularly 
pronounced in mechanically active tissues like stri-
ated muscles, where it acts as a crucial link connect-
ing the cytoskeleton and contractile mechanisms with 
the nucleus. In  vitro experiments have shed light on 
the essential role of microtubules in preserving nuclear 
shape, thereby contributing significantly to nuclear 
integrity and structure [34]. Investigations in rat car-
diomyocytes, where desmin or its associated Nesprin-3 
were deleted, revealed microtubule-dependent nuclear 
invagination, leading to DNA damage, disrupted nuclear 
envelope-chromatin interactions, and transcriptomic 
alterations. Co-expression of dominant-negative KASH 
genes mitigated nuclear invagination, suggesting an 
interaction between microtubules and Nesprin-1 and/or 
Nesprin-2 in this process [35, 36]. Intriguingly, Nesprin-1 
Calponin homology (CH) domains Knockout (KO) mice 

Fig. 1  The cytoskeletal interactions of the LINC Complex and Nesprin at the Nuclear Envelope. Giant Nesprin‑1/2 localizes to the nuclear 
membrane and interacts with SUN‑1/2, facilitating the formation of the LINC complex, which physically connects the cytoskeleton and the nucleus. 
The KASH domain of Nesprins, located at the outer nuclear membrane (ONM), interacts with the SUN domain situated in the perinuclear space 
(PNS), found between the ONM and inner nuclear membrane (INM). Each Nesprin isoform (Nesprin‑1, Nesprin‑2, Nesprin‑3, Nesprin‑4, and KASH5) 
exhibits specific positioning, forming distinct interactions with SUN proteins and displaying unique affinities for various cytoskeletal components. 
Nesprin‑1/2 interact with SUN proteins in the perinuclear space and associate with actin filaments, playing a critical role in linking the nucleus 
to the actin cytoskeleton. Nesprin‑3, located at the ONM, interacts with SUN proteins and exhibits a specific association with intermediate filaments, 
facilitating the connection between the nucleus and intermediate filament networks. Nesprin‑4 interacts with SUN proteins in the perinuclear 
space and demonstrates an affinity for microtubules, contributing to tethering the nucleus to the microtubule cytoskeleton. KASH5, exclusive 
to meiotic cells, acts as an activator adapter for motor proteins, revealing the hierarchical assembly of the KASH5‑motor protein‑dynein complex. 
Nesprin‑4 and KASH5 interact with microtubule motor proteins, including kinesin‑1 or dynein/dynactin complexes
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lacking the actin-binding domain of Nesprin-1G exhib-
ited survival without apparent striated muscle defects, 
suggesting a potentially non-essential role of Nesprin-
1G and its homologs in muscle structure and function 
[37]. Moreover, in lamin A/C gene (LMNA) knockout 
muscle fibers, disruption of the LINC complex resulted 
in increased cell viability and contractility, highlight-
ing the role of Nesprin-1 in transmitting microtubule-
mediated mechanical tension to the nucleus [32]. These 
findings underscore the paramount importance of the 
LINC complex in preserving cellular structural integrity 
and function, particularly in mechanically sensitive tis-
sues such as cardiac and striated muscles. They accentu-
ate the significance of the microtubule network, Nesprin 
proteins, and other cytoskeletal components in main-
taining nuclear shape and preventing damage. Forming 
a sophisticated molecular network beneath the nuclear 
envelope, the LINC complex, connected with nuclear 

membrane protein emerin and the nuclear lamina, facili-
tates mechanical force transfer and direct regulation 
from the cytoskeleton to the nuclear genome, highlight-
ing its crucial role in transmitting mechanical signals 
[15, 38, 39]. Mutations in LINC complex components 
have been implicated in various nuclear envelope dis-
eases in muscle physiology, including DCM and EDMD, 
among other striated muscle disorders. Disruption of the 
LINC complex due to gene mutations leads to structural 
defects, chromatin disorganization, abnormal nuclear 
morphology, myonuclear positioning, impaired force 
transmission, and altered gene regulation, all contribut-
ing to muscle diseases (Fig. 2B). The integrity of the LINC 
complex is vital for maintaining nuclear structure and 
function, underscoring its significance in cell develop-
ment and function [15, 25, 27, 35, 40, 41]. Understand-
ing the LINC complex and its components not only 
elucidates muscle disease mechanisms but also unveils 

Fig. 2  The Role of Nesprin in LINC Complex Formation and Nuclear‑Cytoskeletal Connectivity. A Nesprin plays a pivotal role in facilitating 
the formation of the LINC complex and establishing connectivity between the nucleus and the cytoskeleton. Nesprin proteins interact with SUN 
domain proteins, facilitating the physical connection between the nucleus and the cytoskeleton and enabling crucial cellular processes such 
as mechanotransduction, nuclear positioning, and intracellular signaling. Through its various isoforms and domain structures, Nesprin exhibits 
specific affinities for different cytoskeletal components, including actin filaments, intermediate filaments, and microtubules, further contributing 
to the versatility and functionality of the LINC complex in maintaining cellular integrity and homeostasis. Additionally, the LINC complex mediates 
chromatin binding through interactions with the nuclear lamina. Giant Nesprin‑1/2 directly interfaces the nucleus with the actin cytoskeleton, 
while shorter Nesprin isoforms like Nesprin‑1α2  associate with microtubules via KLC‑1/2 and AKAP6. AKAP6, in turn, tethers centrosomal proteins 
such as PCM‑1 and AKAP9 to the nuclear membrane, forming a cAMP‑PKA signaling hub that may regulate nuclear envelope calcium dynamics 
through interactions with RyR on the sarcoplasmic reticulum. B Mutations in Nesprin can disrupt the LINC complex, uncoupling the cytoskeleton 
from the nucleus and inducing structural aberrations such as abnormal nuclear morphology, size, migration, or positioning. This perturbation can 
trigger the activation of signaling cascades and mechanosensitive transcription factors, ultimately resulting in cellular dysfunction
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potential treatments for nuclear envelope disorders and 
related diseases.

Nesprin protein variants: diverse functions 
and tissue localization
Nesprin-1 and Nesprin-2, classified as ‘giant’ isoforms, 
stand out as some of the largest proteins known, boasting 
impressive molecular weights of 1.01 MDa and 796 kDa, 
respectively. Spanning 146 and 116 exons, respectively, 
these proteins share a remarkable 64% structural homol-
ogy, emphasizing their close relationship and functional 
parallels [15, 42, 43]. Originally identified as markers for 
vascular smooth muscle cell differentiation and synaptic 
muscle components, subsequent research has unveiled 
their extensive expression across diverse cell types, 
underscoring their profound biological significance [15, 
42, 44–46]. Located at the outer nuclear membrane, 
Nesprin-1 and − 2, as formidable proteins, consist of 
three primary structural domains. The N-terminal region 
harbors paired CH domains crucial for actin interactions. 
The central domain, comprising multiple spectrin repeats 
(SRs), serves as a scaffold connecting the CH and KASH 
domains, facilitating various protein interactions. The 
C-terminal KASH domain interacts with proteins on the 
INM containing the SUN domain. Of particular note is 
the highly conserved adaptive domain (AD) at the C-ter-
minus of Nesprin-1 and − 2, which plays a pivotal role, 
particularly in stabilizing the conformation of the SRs 
[15, 42, 47]. Nesprin-3, the third member of the Nesprin 
family, interacts with members of the plakin family, par-
ticularly binding to the intermediate filament cell junc-
tion protein, plectin, to maintain its widespread presence. 
Overexpression of Nesprin-3 leads to significant recruit-
ment of plectin to the nuclear periphery, where both 
molecules colocalize with keratin-6 and − 14. Plectin 
forms connections with integrin α6β4 on the cell surface 
and Nesprin-3 on the ONM in keratinocytes, indicating 
a continuous link between the nucleus and the extracel-
lular matrix through the intermediate filament cytoskel-
eton [46]. In acephalic sperm syndrome, SUN5 plays a 
crucial role in positioning Nesprin-3 to the posterior 
nuclear membrane, essential for connecting the sperm 
head and tail [48]. Recent studies have highlighted the 
pathological role of sperm-associated antigen 4 (SPAG4) 
in cooperation with Nesprin-3 in lung cancer cell migra-
tion [49]. Nesprin-4, primarily expressed in epithelial 
cells, correlates with significant changes in cell organiza-
tion, including the repositioning of the centrosome and 
Golgi apparatus relative to the cell nucleus [50]. Defects 
in Nesprin-4 result in mispositioning of outer hair cell 
(OHC) nuclei and cell death, leading to deafness in 
humans and mice. LRMP, enriched in mammalian taste 
receptor cells and a subset of zebrafish fertilized eggs, 

binds to the calcium channel IP3 receptor, controlling 
taste signal transduction [51–53]. KASH5, restricted to 
meiotic cells, serves as an activator adapter for motor 
proteins, revealing the hierarchical assembly of the 
KASH5-motor protein-dynein complex. Nesprin-4 and 
KASH5 interact with microtubule motor proteins, kine-
sin-1 or dynein/dynactin complexes [54] (Fig. 1). Nesprin 
proteins engage with cytoskeletal elements such as actin, 
microtubules (MT), and intermediate filaments (IFs) via 
their N-terminus, contributing to the formation of the 
cytoplasmic cytoskeletal network and tethering extranu-
clear molecules to the ONM [23, 55, 56]. The broad func-
tional scope of Nesprins becomes apparent through their 
interactions with various linkers of the LINC complex, 
strengthening the bond between the nucleus and fila-
mentous cytoskeletal networks.

 Nesprin-1 and Nesprin-2, encoded by SYNE1 and 
SYNE2 genes respectively, exhibit extensive isoform 
diversity resulting from transcriptional processes, termi-
nation, and alternative splicing. These isoforms, integral 
to various cellular functions, often lack critical structural 
domains (e.g., CH, KASH, or SRs) and display distinct 
expression patterns and localizations across diverse tis-
sues [57] (Fig. 3, Supplementary data Table 1). For exam-
ple, Nesprin-1α2, present in both the ONM and INM, 
serves as a notable illustration of this diversity. Other 
Nesprin-1 and Nesprin-2 isoforms localize to various 
cellular compartments, including the Z-lines of sarcom-
eres in skeletal and cardiac muscles, focal adhesion sites, 
Golgi apparatus, and actin stress fibers [58, 59]. Particu-
larly relevant to cardiac and skeletal muscles are highly 
expressed isoforms such as Nesprin-1α2, Nesprin-2α1, 
and Nesprin-2ε2, which primarily consist of evolution-
arily conserved regions, including the C-terminal SRs 
and adjacent unstructured ADs [60–65]. These regions 
serve as binding sites for various interacting proteins, 
including lamin A/C and emerin. Among these isoforms, 
Nesprin-1α2, a smaller variant of Nesprin-1 weighing 
approximately 112 kDa, comprises the last six SRs of the 
giant Nesprin-1 protein’s C-terminal region and features 
a distinct N-terminal region composed of 31 amino acids, 
originating from a unique initiation site [60, 64]. During 
the process of muscle differentiation, Nesprin-1α2 exhib-
its prominent localization at the ONM, accompanied by 
a substantial increase in expression levels. This isoform 
interacts with pivotal constituents of the outer nuclear 
MTOC, including kinesin-1 subunits, kinesin light chain-
1/2 (KLC-1/2), and alpha-kinase anchoring protein 6 
(AKAP6). Such interaction with perinuclear microtu-
bules reveals a novel role for Nesprin-1α2 in the func-
tion of striated muscles. Notably, pathogenic mutations 
linked to striated muscle diseases are predominantly 
located in the C-terminal region of Nesprin, particularly 
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affecting Nesprin-1α2.This observation underscores the 
paramount importance of this region in the physiology 
of striated muscles. Insights derived from these stud-
ies carry significant implications for understanding the 

potential involvement of Nesprin-1α2 in muscle patholo-
gies, potentially laying the groundwork for novel thera-
peutic interventions targeting these diseases [15, 27, 66, 
67] (Fig. 2).

Fig. 3  Structure of Giant Nesprins and Isoforms. The structure of giant Nesprin‑1/2 comprises three primary domains: tandem actin‑binding 
CH domains, a central rod consisting of spectrin repeats (SRs), and the NE‑targeting KASH domain, which includes a transmembrane (TM) 
domain and a luminal KASH peptide. Additionally, at the C‑terminus, there is a highly conserved adaptive domain (AD) crucial for structurally 
stabilizing the SRs. Various Nesprin isoforms exist, some of which are depicted above, each with SRs close to the C‑terminus. Nesprin‑3 consists 
of a KASH domain and 7 SRs(3β) or 8SRs(3α).Nesprin‑4 is the smallest member of the Nesprin family. It contains 1 SRs protein sequence and lacks 
an actin‑binding domain (ABD).However, these isoforms often lack critical structural domains (e.g., CH or SRs) and display distinct expression 
patterns and localizations across diverse tissues
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The spectrum of disorders associated with Nesprin 
dysregulation
To date, mutations in SYNE1/2 have been identified 
through the screening of patients with muscle-specific 
disorders, including EDMD and DCM, comprising over 
3.5% of causative mutations [27]. The mutations identi-
fied in the C-terminus of Nesprin-1/2 have been exten-
sively characterized, demonstrating their capacity to 
induce defects in nuclear morphology, aberrant localiza-
tion, and disrupted binding of SUN1/2, lamin A/C, and 
emerin, thereby impairing myogenesis. These disrup-
tions in the LINC complex mirror those observed with 
mutations in lamin A/C and emerin. Furthermore, car-
diac muscle phenotypes are evident in two SYNE1 and/
or SYNE2 knockout mouse models, both of which display 
disrupted LINC complexes [25, 32, 68].

DCM
DCM represents a critical condition characterized by 
impaired left ventricular expansion and contraction, often 
culminating in heart failure and sudden cardiac death, 
particularly among younger individuals [69]. Recent 
investigations have unveiled that mutations in the LMNA 
gene, responsible for encoding lamin A/C, account for up 
to 5% of familial DCM cases. Understanding how muta-
tions in lamin A/C and emerin, proteins ubiquitously 
expressed across diverse tissues, contribute to muscle-
specific disorders has emerged as a central focus of sci-
entific inquiry [70]. Research underscores the pivotal role 
of their interacting partners—Nesprin-1, Nesprin-2, and 
SUN1/2—in the progression of these diseases. Cellular 
studies involving DCM patients have unveiled muta-
tions often leading to altered nuclear morphology. Fibro-
blasts or lymphocytes samples frequently exhibit nuclear 
abnormalities, including wrinkling, micronuclei forma-
tion, swelling, and fragmentation. Cells afflicted by DCM 
commonly show notable disturbances in the localization 
of LINC complex components and changes in the bind-
ing of Nesprin-1 and − 2. These mutations substantially 
disrupt the interconnections among Nesprin, lamin A/C, 
SUN proteins, and the microtubule motor protein KLC-
1/2 [25, 27]. Investigations on Nesprin-1 mutated C2C12 
cells associated with DCM have revealed reduced fusion 
capacity, decreased expression of myogenic proteins, and 
diminished MHC expression during myocyte differen-
tiation. Moreover, heightened levels of Nesprin-1 were 
detected in fibroblasts from these patients [27]. Reports 
underscore disruptions in the LINC complex, alterations 
in nuclear morphology, and disorders in muscular devel-
opment in DCM cases linked to mutations in lamin A/C 
or emerin, emphasizing the crucial role of an intact LINC 
complex in preserving muscle physiological functions 

[71]. These findings not only advance our comprehen-
sion of DCM’s pathophysiology but also identify poten-
tial therapeutic targets within these specific molecular 
pathways.

EDMD
EDMD manifests as a rare genetic myopathy encompass-
ing a spectrum of potentially life-threatening cardiac 
complications, necessitating prompt and precise diag-
nosis. Clinical presentations include muscle weakness, 
early-onset muscle contractures, cardiac conduction 
anomalies, and cardiomyopathy, exhibiting significant 
variability across EDMD subtypes and individual cases 
[72]. The genetic landscape of EDMD encompasses genes 
such as EMD, LMNA, SYNE1, SYNE2, FHL1, TMEM43, 
SUN1, SUN2, and TTN, encoding emerin, lamin A/C, 
Nesprin-1, Nesprin-2, FHL1, LUMA, SUN1, SUN2, and 
Titin, respectively. However, more than 60% of EDMD 
patients do not harbor mutations in these established 
genes (EMD or LMNA), implying the existence of uni-
dentified pathogenic genes [25, 56, 70, 73–90].

EDMD is characterized by a triad of symptoms, with 
retraction appearing first, followed by muscle weak-
ness and wasting, and finally, the development of car-
diac dilation [72]. Cardiac complications, such as atrial 
tachycardia, atrial standstill, ventricular tachycardia, 
and cardiomyopathy, are prevalent in EDMD. Symptoms 
typically manifest in the second decade of life, including 
palpitations, pre-syncope and syncope, exercise intoler-
ance, and heart failure. Notably, skeletal muscle weakness 
typically precedes cardiac symptoms in EDMD [91, 92]. 
However, it’s important to clarify that the elevated risk of 
cardiac complications in female EDMD patients primar-
ily applies to cases caused by mutations in X-linked genes 
such as EMD and FHL1. In these cases, females serve 
as carriers but may not necessarily develop symptoms 
or may experience less severe symptoms [74]. Moreo-
ver, EDMD patients with LMNA mutations beyond 50 
years of age exhibit over a 60% incidence of heart fail-
ure, underscoring the necessity for deeper insights into 
EDMD’s genetic underpinnings and pathomechanisms to 
enhance diagnostic accuracy, develop targeted therapies, 
and improve patient quality of life [93].

The pathogenesis of EDMD involves mutations in vari-
ous genes, including the TMEM43 gene, encoding the 
nuclear envelope protein LUMA. LUMA plays a pivotal 
role in nuclear envelope structuring and maintenance, 
collaborating with emerin and lamin A/C to preserve 
nuclear integrity and functionality [94]. Mutations in 
LUMA result in atypical nuclear shapes, impacting cel-
lular functions. LUMA is crucial for emerin positioning, 
and its interaction with SUN2 protein is critical; mutated 
LUMA may disrupt SUN2 intranuclear localization by 
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binding to it, contributing to its dysfunction [83, 94]. 
Additionally, altered Nesprin presence can affect emerin 
and lamin proteins’ positioning, while mutant lamin 
A proteins can lead to the mislocalization of LAP2, 
Nup153, and lamin B. Disrupted interactions between 
mutated SUN1, lamin A/C, and emerin could result in 
nuclear functional anomalies. Skeletal muscle biopsies of 
EDMD patients often exhibit clustered nuclei, increased 
variability in fiber size, fibrosis, and significant adipose 
tissue presence [41, 95].

Recent discoveries have unveiled multiple mutations 
in Nesprin-1, Nesprin-2, and SUN1/2 in both DCM and 
EDMD patients. Mislocalization of lamin A/C and SUN2 
has been observed in fibroblasts from EDMD patients 
and in neonatal rat cardiomyocytes transfected with 
Nesprin-1 isoforms carrying DCM-related mutations. 
These gene mutations, considered independent patho-
genic agents for muscle diseases, include SUN1/2, which 
are viewed as disease-modifying genes for other causa-
tive genes of EDMD, such as LMNA, EMD, and LAP2α 
[16, 27].Nesprin mutations variably impact LINC com-
plex functions, particularly in the C-terminal SR region, 
inducing nuclear morphology defects and disrupting 
binding with nuclear membrane-associated proteins. 
Such disruptions lead to LINC complex instability, com-
promising mechanical transduction within muscle cells, 
critical under mechanical strain [14, 17]. Mutations in the 
AD region of Nesprin significantly affect its interaction 
with microtubule motor proteins KLC-1/2, potentially 
leading to defects in nuclear migration and positioning, 
impeding muscle development and maturation [25]. This 
intricate network of interactions among nuclear envelope 
proteins underscores their pivotal role in maintaining 
nuclear structure and cellular functionality, particularly 
in tissues subjected to significant mechanical stress like 
cardiac and skeletal muscles.

Deciphering Nesprin mutations and their 
implications for cellular dynamics in muscular 
disease pathogenesis
In the realm of muscular disease pathologies, 
Nesprin-1/2 plays a crucial role by localizing at the 
nuclear envelope and forming the LINC complex 
alongside SUN1/2, lamin A/C, and emerin. This com-
plex acts as a vital bridge between the nucleus and the 
actin cytoskeleton [37, 96]. Ongoing investigations 
into these diseases propose two significant hypotheses. 
The structural hypothesis emphasizes the role of the 
LINC complex in tethering the nuclear scaffold to the 
cytoskeleton and associated proteins, including molec-
ular motors, microtubule-associated proteins (MAPs), 
microtubules, and the actin network. Disruption of this 

complex can compromise extracellular forces, render-
ing cells susceptible to mechanical damage [72, 96–99].
The pivotal role of Nesprin in myonuclear position-
ing spans organisms from Caenorhabditis elegans to 
higher ones, where mutations impede the recruitment 
of partners like Akap450 or KLC-1/2, resulting in mis-
placement of nuclei [72, 97–99]. The gene regulation 
hypothesis suggests that compromised LINC com-
plexes may alter nuclear membrane protein interac-
tions with chromatin, particularly lamin. Mutations in 
genes encoding LINC complex proteins can modulate 
transcription factor expression or tissue-specific gene 
patterns. Laminopathies exhibit ERK pathway hyper-
activation, observed in LMNA mutations causing car-
diomyopathy or SMAD6 overexpression, accelerating 
myogenic differentiation in LMNA-mutated cells [27, 
72].

Nesprin-1 mutations primarily disrupt nuclear mor-
phology by displacing lamin A/C, emerin, and SUN2 
from the nuclear membrane, consequently disrupt-
ing the LINC complex. These mutations interfere with 
microtubule-driven protein interactions, leading to the 
disassembly of nucleus-microtubule connections [25, 
85, 88, 100, 101]. In lower organisms like Caenorhab-
ditis elegans, ANC-1 mutations similarly result in mis-
placement of nuclei [72, 102]. Additionally, Nesprin-1 
mutations in mammalian myoblasts impede the nuclear 
envelope recruitment of Akap450 during muscle cell 
differentiation [97, 98]. Mutations in SYNE1/2 disrupt 
muscle-specific Nesprin isoforms, affecting nuclear 
morphology and nucleocytoskeletal coupling. These 
mutations potentially alter chromatin structural integ-
rity, influencing cell signaling and gene regulation, 
including MAPK hyperactivation, perturbation of myo-
genic regulatory factor (MRF) expression, and altera-
tion of mechanosensitive genes in Nesprin-1/2 double 
knockout (DKO) mouse cardiomyocytes [97].

Nesprin mutations exert a profound influence on car-
diac structural and functional integrity, illuminating 
their pivotal role in cardiac pathophysiology. Recent 
investigations offer a comprehensive overview of the 
repercussions of Nesprin mutations on cardiac struc-
ture, particularly within the SYNE1 gene [25]. Sig-
nificantly, in-depth analyses highlight the functional 
implications, including compromised mechanical sta-
bility and disturbance of cellular architecture in car-
diac myocytes. These mutations disrupt cytoskeletal 
organization, thereby impacting heart contractile func-
tion [27, 103]. By disrupting nuclear morphology and 
mechanical integrity, these mutations provide valuable 
insights into the pathophysiology of cardiac disorders.
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Advancing therapeutic strategies 
for nesprin‑related muscular disorders
Rectification of Nesprin gene mutations
Nesprin gene mutations underlie specific muscular 
degenerative diseases such as DCM and EDMD [15], 
offering potential avenues for corrective interventions 
through gene therapy. A range of techniques, includ-
ing CRISPR/Cas9 gene editing [104], gene replacement 
therapy, RNA interference, antisense oligonucleotides, 
and homologous recombination repair, provides oppor-
tunities to rectify or substitute defective Nesprin genes 
at the cellular level [37, 72, 103, 105]. Despite promising 
advancements, these methodologies pose intricate bio-
logical and technical challenges. Many gene therapy and 
editing strategies, although evolving rapidly, currently 
remain primarily experimental, necessitating further 
extensive research and meticulous clinical trials to firmly 
establish their safety and efficacy.

Controlling nesprin protein expression
Modulating Nesprin protein expression through phar-
macological [106] or gene-based interventions holds 
promise in restoring or enhancing cardiac muscle cell 
functionality. These strategies encompass a spectrum of 
methodologies, including gene editing, RNA interfer-
ence (RNAi), antisense oligonucleotides, transcription 
factor modulation, epigenetic regulation, and control 
over mRNA stability and protein degradation [107, 108]. 
Evaluating potential side effects and the broader reper-
cussions of modulating protein expression on cellular 
mechanisms is paramount, especially in clinical appli-
cations where comprehensive assessments of safety and 
efficacy are pivotal. Given the critical role of Nesprin 
proteins in maintaining cellular structure and function, 
manipulating their expression could intricately impact 
diverse cellular processes. Thus, precise management of 
these interventions is essential to mitigate unintended 
cellular responses. For instance, in cases where decreased 
Nesprin expression correlates with specific cardiac con-
ditions, the development of pharmaceuticals to boost its 
expression could offer valuable therapeutic benefits [107, 
109].

Enhancing LINC complex functionality
Recent studies have unveiled the potential therapeutic 
implications of targeting the LINC complex in LMNA-
related EDMD and DCM [16, 110, 111]. By modulat-
ing the expression of Nesprin proteins or implementing 
gene therapy strategies, researchers aim to restore the 
structural integrity of cardiac muscle cells and enhance 
mechanotransduction capacity [16]. Additionally, phar-
macological interventions targeting the components of 

the LINC complex offer promising avenues for thera-
peutic intervention [111]. Furthermore, refining mecha-
notransduction mechanisms, advancing cell therapy 
approaches, and exploring protein interactions within the 
LINC complex represent additional strategies to improve 
therapeutic outcomes for LMNA-related EDMD and 
DCM [110].

Nesprin serves as a pivotal component of the LINC 
complex, collaborating with SUN domain proteins, lamin 
A/C, and emerin at the nuclear membrane [15, 38, 39]. 
Enhancing the functionality of the LINC complex pre-
sents an opportunity to restore structural integrity and 
bolster mechanotransduction capacity within muscle 
cells [112–114]. This augmentation holds promise in 
potentially mitigating the progression of muscle degen-
erative diseases, thereby offering avenues for improved 
management and treatment outcomes for these condi-
tions. The disruption of the LINC complex offers a novel 
therapeutic avenue with significant potential benefits 
for individuals with LMNA-related EDMD and DCM. 
Through targeted interventions aimed at restoring the 
integrity of the LINC complex, researchers are positioned 
to inaugurate a new era of precision medicine for muscu-
lar disorders, promising enhanced patient outcomes and 
quality of life.

Augmenting cardiac muscle cell function
The focal point lies in amplifying the pivotal role of 
Nesprin protein in fortifying the connection between 
the nucleus and the cytoskeletal framework, essential 
for maintaining the structural stability of cardiac muscle 
cells. This endeavor encompasses a spectrum of strate-
gies, ranging from modulating Nesprin protein expres-
sion to implementing gene therapy, pharmacological 
interventions, refining mechanotransduction mecha-
nisms [96], advancing cell therapy, exploring protein 
interactions, and employing anti-inflammatory and anti-
oxidant methodologies [106], alongside biomechanical 
interventions. Given the intricate nature of cardiac mus-
cle cells and the multifaceted nature of heart diseases, the 
development of targeted small molecule drugs tailored 
specifically for the Nesprin protein emerges as a promis-
ing avenue toward potentially enhancing the functional-
ity of cardiac muscle cells and fortifying overall cardiac 
performance.

Conclusion
Nesprin, together with its associated components, 
stands as a critical determinant of nuclear stability and 
functional efficiency, essential for the preservation of 
normal muscle physiology and the prevention of mus-
cle-related pathologies. As ongoing research penetrates 
deeper into unraveling the complex architecture and 
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diverse functionalities of these protein complexes, a vast 
potential emerges for the discovery of novel therapeutic 
avenues and targets. This advancement holds immense 
promise in effectively tackling genetic muscle disorders, 
including DCM and EDMD. By further elucidating the 
intricate roles of these proteins, new pathways are illu-
minated, paving the way for significant breakthroughs 
in the management and treatment of such debilitating 
conditions, thereby offering renewed hope for improved 
patient outcomes in the foreseeable future.
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