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Abstract 

Background Lipids are regulators of insulitis and β‑cell death in type 1 diabetes development, but the underlying 
mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling 
regulate β‑cell death.

Methods We performed lipidomics using three models of insulitis: human islets and EndoC‑βH1 β cells treated 
with the pro‑inflammatory cytokines interlukine‑1β and interferon‑γ, and islets from pre‑diabetic non‑obese mice. 
We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme 
in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid‑mediated 
cytokine signaling.

Results Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species 
and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays 
showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase 
PLA2G6 are enriched in islets. In downstream signaling, omega‑3 fatty acids reduce cytokine‑induced β‑cell death 
by improving the expression of ADP‑ribosylhydrolase ARH3. The mechanism involves omega‑3 fatty acid‑mediated 
reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression 
of Arh3, which in turn decreases cell apoptosis.

Conclusions Our data provide insights into the change of lipidomics landscape in β cells during insulitis and identify 
a protective mechanism by omega‑3 fatty acids.
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Background
Type 1 diabetes (T1D) affects over 1.25 million peo-
ple in the U.S. and is characterized by the autoim-
mune destruction of the insulin-producing β cells [1]. 
The β-cell death disrupts blood glucose homeostasis, 
leading to health complications that reduce the life 
expectancy of individuals with the disease by 11 years 
in males and 13 years in females [2]. T1D treatment 
relies on exogenous insulin administration, and there 
is no cure or permanent remission from the disease. 
Therefore, a better understanding of the mechanisms 
contributing to β-cell loss is warranted in developing 
alternative therapies.

T1D onset is associated with changes in serum lipid 
profiles, including increases in blood triacylglycerol and 
cholesterol levels, resulting from poor glycemic control 
[3]. Lipids also contribute to disease development and 
circulating lipids are biomarkers for autoimmunity and 
T1D progression at time points prior to the disease 
onset [4, 5]. Moreover, they are also essential mediators 
of islet inflammation (insulitis) [6–8]. During insulitis, 
pro-inflammatory cytokines activate phospholipases, 
such as 85/88 kDa calcium-independent phospholi-
pase A2 (PLA2G6 or iPLA2β), leading to the cleavage 
of phosphatidylcholine (PC) into lysophosphatidylcho-
line (LPC) [7, 9, 10]. This reaction results in the release 
of fatty acids, such as ω-6, a precursor of prostaglan-
dins, leukotrienes, and thromboxanes that have inflam-
matory and apoptotic actions, contributing to β-cell 
apoptosis [11–13]. Conversely, dietary supplementation 
with ω-3 fatty acids has been shown to reduce the risk 
of developing islet autoimmunity by 55% in humans 
and the development of diabetes in non-obese diabetic 
(NOD) mice by 60% [14, 15]. Despite the latest devel-
opment in this area, the role of the islet lipidome dur-
ing the progression of T1D is poorly understood. Mass 
spectrometry analysis of islets has identified LPC and 
ceramides as essential molecules in β-cell death [10]. 
However, deep characterization of the islet lipid com-
position during insulitis is still missing.

Here, we measured changes in islet/β cell lipid com-
position in 3 insulitis models: I) human islets II) a 
human β-cell line, both exposed to the pro-inflamma-
tory cytokines IL-1β and IFN-γ, which induce similar 
molecular signatures observed in β cells from individu-
als with T1D [16], and III) in islets from NOD mice. In 
this study, we used advance lipidomics techniques to 
unveil the changes and contribution of lipids in insuli-
tis and β-cell death, including mass spectrometry imag-
ing to determine the spatial location of lipids in the islets 
from humans and mice. Using various molecular tools, 
we unraveled a mechanism of β-cell death regulation by 
polyunsaturated fatty acids.

Methods
Mice
Female 6-week-old non-obese diabetic NOD/ShiLtJ 
(#001976) and non-obese diabetes-resistant NOR/LtJ 
(#002050) mice were purchased from Jackson Labs. The 
husbandry of mice and experimental procedures were 
performed according to an approved IACUC protocol at 
the University of Colorado (#00045). Mice were housed 
for < 1 week prior to islet isolation. Approximately 320–
520 islets (n = 3) were isolated using a Histopaque gra-
dient centrifugation and further handpicking of islets as 
described previously [17].

Human pancreatic islet and EndoC‑βH1 cells
The lipidomics and proteomic data of the human islets 
(n = 10, deidentified tissue were obtained from the Inte-
grated Islet Distribution Program, details in Table S1) 
and EndoC-βH1 cells (n = 3) treated with 50 U/mL 
IL-1β + 1000 U/mL IFN-γ (cytokine cocktail 1 or CT1) for 
varying hours were collected as described in detail else-
where [18, 19].

MIN6 cell line culture and treatment
MIN6 cells were a gift from the Yamagata lab, and were 
cultured in DMEM containing 4.5 g/L each of D-glu-
cose and L-glutamine, 10% FBS, 100 units/mL penicillin, 
100 μg/mL streptomycin and 50 mM 2-mercaptoethanol 
maintained at 37 °C in a 5%  CO2 atmosphere [20, 21]. For 
knockdown experiments, cells were transfected using 
Lipofectamine RNAiMAX (Invitrogen) with SMART-
pool ON-TARGETplus non-targeting siRNA (Dharma-
con, cat#D-001810-10-20) or siRNA targeting Pla2g6, 
Adprhl2 (Dharmacon, cat# L-051819-01-0020), and 
Suz12 (Dharmacon, cat# L-040180-00-0005) for vary-
ing hours, followed by cytokine cocktail 2 (CT2: 100 ng/
mL IFN-γ: R&D, cat#485-MI-100, 10 ng/mL TNF-α: 
R&D, Cat#410-MT-010, and 5 ng/mL IL-1β: R&D, cat 
#401-ML-005) treatment for 24 h. Cells were treated at 
80% confluency with 80 μM arachidonic acid (Cayman, 
CAS#506–32-1), linoleic acid (Cayman, CAS#60–33-3), 
eicosapentaenoic acid (Cayman, CAS#10417–94-4), or 
docosahexaenoic acid (Cayman, CAS#6217–54–5) or 
equal volume of 100% ethanol (vehicle control) in combi-
nation with CT2 for 8 hrs.

Lipidomic analysis
Samples were subjected to metabolite, protein, and lipid 
extraction (MPLEx) with all the procedures done on 
ice or 4 °C to reduce sample degradation, as previously 
described [22]. Extracted lipids were dissolved in metha-
nol and loaded on a reversed-phase column connected 
to a NanoAcquity UPLC system (Waters) and interfaced 
with a Velos Orbitrap mass spectrometer (Thermo Fisher 
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Scientific) [23] (see Table S2 for parameters). Lipid spe-
cies were identified using LIQUID [23] and manually 
validated based on the retention time, precursor isotopic 
profile, diagnostic fragments from head groups and fatty 
acyl chains. Isomers were named in alphabetical order 
based on their elution times. Features of identified lipids 
were extracted with MZmine [24]. Peaks were detected 
with a 20% intensity tolerance, noise level of 5e3, mass 
tolerance of 0.008 m/z and retention time tolerance of 
0.3 min. Chromatograms were built with a time span of 
0.1 min, minimum height of 5 ×  103 and mass tolerance 
of 0.008 m/z. Peaks were then aligned with joint aligner 
with mass tolerance of 0.01 m/z, retention time tolerance 
of 0.2 min, and weights of both retention time and m/z 
of 1. Missing values were filled with gap filling based on 
the same retention time and mass tolerance of 0.008 m/z. 
Statistics were performed using standard paired t-test 
followed by a multiple-test Bonferroni correction.

Proteomic analysis
MIN6 cell proteins were dissolved in 50 mM  NH4HCO3, 
8 M urea and 10 mM dithiothreitol and incubated for 1 h 
at 37 °C with 800 rpm shaking. Then 400 mM iodoaceta-
mide was added to a final concentration of 40 mM, and 
the mixture was incubated for another hour in the dark 
at room temperature. The reaction mixture was 8-fold 
diluted with 50 mM  NH4HCO3, and 1 M  CaCl2 was added 
to a final concentration of 1 mM. Proteins were digested 
for 3 h at 37 °C using trypsin at 1:50 enzyme: protein ratio. 
Digested peptides were desalted by solid-phase extrac-
tion using C18 cartridges (Discovery, 50 mg, Sulpelco) 
and dried in a vacuum centrifuge. Peptides were ana-
lyzed on a Waters NanoAquity UPLC system coupled 
with a Q-Exactive mass spectrometer (see Table S2 for 
parameters). Data were processed with MaxQuant soft-
ware (v.1.5.5.) [25] using the mouse reference proteome 
database from UniProt Knowledge Base (downloaded on 
August 14, 2018). Protein N-terminal acetylation and oxi-
dation of methionine were set as variable modifications, 
and cysteine carbamidomethylation as fixed modifica-
tion. Mass shift tolerance was used as the default setting 
of the software. Only fully tryptic-digested peptides were 
considered, allowing up to two missed cleaved sites per 
peptide. Quantification of proteins was done using the 
intensity-based absolute quantification (iBAQ) method 
[26]. Data were log2 transformed and normalized by lin-
ear regression and central tendency using InfernoRDN 
(formerly Dante) [27]. Statistically significant proteins 
were determined by ANOVA or by Student’s t-test.

Bioinformatics analysis
The significantly different lipids and proteins were sub-
mitted to ontology/function-enrichment analysis using 

Lipid MiniOn [28] and DAVID [29] tools, respectively. 
For the Lipid MiniOn analysis, the full list of identified 
lipids was set as the background and the significantly dif-
ferent species as the query. Ontologies were considered 
enriched with a p ≤ 0.05 using the Fisher’s exact test. For 
the DAVID analysis, the differentially abundant proteins 
were set as the query and the entire genome was set as 
the background. Only enriched pathways (p ≤ 0.05) of the 
KEGG database were used and they were grouped based 
on shared proteins using Enrichment Map [30].

Mass spectrometry imaging analysis
Nanospray desorption electrospray ionization (nano-
DESI) mass spectrometry imaging was performed on 
a Q Exactive HF-X mass spectrometer (Thermo Fisher 
Scientific) [31]. High-resolution nano-DESI probes 
were assembled using two fused silica capillaries pulled 
to O.D. 15–25 μm. A shear force probe with a tip diam-
eter of ~ 10 μm was integrated with the nano-DESI probe 
and was used to precisely control the distance between 
the probe and the sample. The position of the samples 
was controlled by a motorized XYZ stage. Samples were 
scanned at a rate of 10 μm/s under the nano-DESI probe 
in lines with a step of 20 μm between the lines. A 9/1 
(v/v) methanol/water mixture containing 200 nM LPC 
19:0 (internal standard) was propelled through the nano-
DESI probe at 500 nL/min (see Table S2 for parameters). 
A custom-designed software, MSI QuickView, was used 
for data visualization and processing. Ion images were 
generated by normalizing the signal of the analyte to the 
signal of the internal standard (LPC 19:0). Lipids were 
putatively identified by matching based on the high mass 
accuracy against the species characterized in the lipid-
omics analysis.

Fluorescence in‑situ hybridization (FISH)
For FISH experiments, ten oligonucleotide probes con-
taining targeting and 3′ readout overhang domains were 
designed against the Pla2g6 transcript coding region 
(sequences in Table S3) [32]. Targeting domains were 
20-nt long, complementary to the Pla2g6 mRNA, with 
40–60% CG content and without self-repeats or inner 
loop structures. A secondary probe labeled with two 
Alexa647 molecules was used to hybridize with the 3′ 
overhang domain. Samples were fixed with fresh 4% 
paraformaldehyde. After quenching the residual para-
formaldehyde with 0.1% sodium borohydride, samples 
were permeabilized with 0.2% Triton-X 100 and stored 
in 70% ethanol. The primary and secondary probes 
(50 nM final concentration) and anti-insulin antibody 
(Table S3) (1000-fold dilution) were diluted in hybridi-
zation solution (10% dextran sulfate, 15% formamide, 
1× SSC, 3.4 mg/mL tRNA, 0.2 mg/mL RNase-free BSA, 
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2 mM ribonucleoside vanadyl complex). Samples were 
incubated with probes overnight at 37 °C overnight in a 
humid chamber. Samples were rinsed with 15% forma-
mide in 1× SSC, followed by staining with Atto 488-con-
jugated secondary antibody (Table S3) and DAPI. Images 
were collected on an Olympus IX71-based single-mol-
ecule microscope equipped with 405 nm, 488 nm, and 
640 nm solid lasers, 100× oil immersion objective lens 
(NA 1.4) and an EMCCD camera (Andor iXon Ultra 
897). Fluctuation localization imaging-based FISH (fli-
FISH) was used to extract the location of Pla2g6 mRNA 
in tissue sections [32]. Photoswitching was activated 
by using GLOX-containing buffer: 50 mM Tris, 10 mM 
NaCl, 10% glucose, 560 μg/mL glucose oxidase, 34 μg/mL 
catalase and 1% β-mercaptoethanol.

Tissue processing and immunohistochemistry
Mouse pancreata were dissected, washed in ice-cold PBS, 
and fixed for 4 h in 4% paraformaldehyde at 4°C. The tis-
sues were then incubated in 30% sucrose overnight and 
frozen at optimal cutting temperature. Cryosections with 
10 μm thickness were obtained and immunohistochem-
istry for PLA2G6 was performed using the Mouse-on-
Mouse kit (Vector Labs) and the Vectastain ABC HRP kit 
(Vector Labs).

Quantitative real‑time PCR analysis
Cells were harvested using Tri reagent (Zymo, 
Cat#R2050–1-200) and total mRNA was extracted using 
the RNA Clean & Concentrator™-5 (Zymo, Cat# R1014) 
RNeasy Mini kit (Qiagen). RNA was quantified using 
nanodrop and was aliquoted accordingly to perform 
one-step qRT-PCR using QuantiNova™ SYBR Green RT-
PCR Kit (Qiagen, Cat. No. / ID: 208154). Pre-designed 
mouse primers were ordered from Millipore sigma (Cat# 
KSPQ12012) and their efficiency was validated prior to 
use (oligonucleotide information in Table S3). Best house-
keeping gene for our experiment was determined using 
BioRad Reference 12 gene panel (Cat# 10025216). The 3 
best housekeeping genes with the least standard deviation 
among the tested groups were selected to normalize the 
expression (Nono, Rpl13a, and Hprt). Expression level of 
genes were calculated using Livak’s method [33].

Western blotting
Cells were harvested in RIPA buffer or M-PER™ Mam-
malian Protein Extraction (Thermo, Cat#78501) con-
taining protease and phosphatase inhibitors (Thermo, 
Cat#A32959). Protein quantity was measured using BCA 
assay and was prepared using 4x NuPAGE LDS sample 
buffer accordingly. Samples were run on a Bis-Tris 4–12% 
Mini Gels and proteins were transferred to PVDF mem-
branes. After blocking in 5% milk in TBS containing 0.1% 

Tween 20 or StartingBlock™ T20 (TBS) Blocking Buffer 
(Thermo, Cat#37543), membranes were incubated in 
specific primary antibodies at 4°C overnight. Anti-mouse 
and anti-rabbit horseradish peroxidase-conjugated anti-
bodies (Table S3) were used for secondary antibodies and 
enhanced chemiluminescent substrate was used for sig-
nal detection.

Apoptotic assay
The experiment was done as per manufactures protocol 
(Promega Cat# G8092). Briefly, MIN6 cells were treated 
with EPA and DHA for 48 h followed by 24 h cytokine 
cocktail CT2 treatment. Appropriate amount of caspase-
Glo 3/7 reagent was added to the wells. The contents 
were gently mixed for 30 s and luminescence was read for 
3 h every 30 min interval. The time point with the highest 
signal was selected for analysis.

Data visualization and statistical analysis
Basic data analysis was done in Microsoft Excel. All sta-
tistical analysis and data visualization (volcano plots 
and bar graphs) were performed using GraphPad Prism 
9 (Version 9.4.1). Heatmap was plotted using Perseus-
MaxQuant [34]. Protein pathway analysis  was visual-
ized using cytoscape_v3.9.1. ChIP-Seq data visualization 
was performed using IGV software.

Results
Lipidome analysis of insulitis models
We studied three models of insulitis: (I) human 
EndoC-βH1 cells exposed to the cytokine cocktail 1 
(CT1: IL-1β + IFN-γ) for 48 h, (II) human islets exposed 
to CT1 for 24 h, and (III) islets from NOD mice at the 
pre-diabetic stage (6-week-old) vs. age-matched NOR 
mice. To verify that 6 weeks of age corresponds to the 
initial T1D developmental stages of NOD mice, we per-
formed proteomics analysis of islets from both NOD 
and NOR mice (Tables S4–S5) and compared the results 
against published proteomics data of EndoC-βH1 cells 
and human islets exposed CT1 [18, 19]. We observed 
an upregulation of inflammatory markers, such as the 
antigen transport protein Tap1, the transcription factor 
STAT1 and the interferon-induced guanylate-binding 
protein GBP2 (Fig. S1). None of the samples had reduced 
levels of insulin (Fig. S1), confirming that the islets from 
NOD mice had inflammation but remained in a pre-dia-
betic stage without significant β-cell loss.

Next, lipidomics analysis of the insulitis models – 
EndoC-βH1 cells (+/− CT1) human islets (+/− CT1) 
and murine islets (NOD vs. NOR), resulted in the 
identification and quantification of 369, 558 and 251 
lipid species, respectively (Fig. 1a, Tables S6–S11). The 
overall profiles of many regulated lipid classes were 
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different comparing human islets with EndoC-βH1 
cells and murine islets insulitis models (Fig. 1b). How-
ever, certain lipid groups including LPC and PC with 
long polyunsaturated fatty acyl chains were commonly 
increased across all three models, whereas triglycerides 
(TGs) were consistently decreased (Fig.  1b). To better 
understand commonly regulated lipid metabolic pro-
cesses across all models, we performed an enrichment 

analysis using Lipid Mini-On [28]. This tool determines 
whether any specific lipid feature, such as subclass, 
fatty acyl chain length, or degree of unsaturation, is 
enriched among the differentially regulated lipids. Poly-
unsaturated fatty acids C22:5 and C22:6 were enriched 
among the 3 classes of commonly regulated lipids 
across the insulitis models (Fig.  1c). We hypothesized 
that lipid groups commonly regulated in EndoC-βH1 

Fig. 1 Global lipidomic analysis of 3 common insulitis models, i.e., EndoC‑βH1 (n = 3) cells and human islets (n = 10) exposed to CT1 (IL‑1β 
and INF‑γ) for 48 h and islets from non‑obese diabetic (NOD) mice in pre‑diabetic stage (6 weeks of age) vs. age‑matched NOR mice (n = 3). Lipids 
were extracted and analyzed by liquid chromatography‑tandem mass spectrometry. a Volcano plots of the lipid species relative abundances. 
b Number of lipid species significantly (Student’s t‑test p ≤ 0.05) regulated in each class. “α” represents common lipid species upregulated 
or downregulated in all three insulitis models. c Lipid species that are consistently regulated in the 3 insulitis models. Each lipid species is named 
with the abbreviation of its class (e.g., LPC and PC) followed by the length of the fatty acid and number of double bonds (separated by a colon) 
in parenthesis. The letters after the lipid names represent different isomers that are separated in the chromatography in alphabetical order. The 
relative abundance in T1D model vs. control is color‑coded. Isobaric coeluting species (separated by semicolons) were co‑quantified
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cells, human islets, and murine islets in response to 
pro-inflammatory cytokines were important for T1D 
pathogenesis; therefore, we further investigated them.

Spatial distribution of lipids and lipids metabolizing 
enzyme in islets
The spatial distribution of PCs and LPCs were deter-
mined in murine and human pancreata using mass 
spectrometry imaging. Lipid molecular species 
were putatively identified by matching their meas-
ured m/z against the calculated m/z of characterized 

species from the lipidomics analyses in Fig. 1. PC spe-
cies with (PC(38:3), PC(40:5) and PC(40:6)) and without 
(PC(34:1), PC(36:1), PC(36:2)) longer/polyunsaturated 
fatty acyl (PUFA) chains and LPC species (LPC(16:0), 
LPC(18:0) and LPC(18:1)) were enriched in mouse 
islets (endocrine tissue) compared to the surrounding 
exocrine tissue. In human islets, an enrichment of PC 
but not of LPC species was observed compared to the 
surrounding tissue (Fig.  2a). As the solvent composi-
tion used in imaging experiments prevented an efficient 
extraction of the TGs, we were unable to determine the 

Fig. 2 Spatial localization of lysophosphatidylcholines, phosphatidylcholines and phospholipase PLA2G6 in pancreata. a Chemical image of mouse 
and human pancreata by mass spectrometry. Each image shows either the optical image or color‑coded distribution of different lipids. Lipid species 
were identified by matching against the lipids characterized and quantified on the lipidomics analysis based on their accurate masses. b PLA2G6 
fluorescence in situ hybridization (FISH) of islets from non‑obese diabetes resistant (NOR) mice (6 weeks of age) and MIN6 cell line. Cells and tissues 
were stained with anti‑insulin antibody (green), DNA stain 4′,6‑diamidino‑2‑phenylindole (DAPI – blue) and fluorescent‑labeled antisense Pla2g6 
oligonucleotide (red). c Immunohistochemistry (IHC) analysis of PLA2G6. Tissue was stained with biotin‑conjugated anti‑Pla2g6 antibodies 
followed by avidin‑conjugated horseradish peroxidase. Localization was visualized by horseradish peroxidase‑mediated oxidation and precipitation 
of 3,3′‑diaminobenzidine (brown). The images are representative of two independent experiments
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localization of that lipid class. Nevertheless, we were 
able to confirm the spatial localization of PC species 
with long polyunsaturated fatty acids and LPC in the 
islets.

We also investigated the distribution of the phospholi-
pase PLA2G6, which hydrolyses PCs into LPCs and fatty 
acids. These fatty acids include polyunsaturated ones 
that have been shown to contribute to the development 
of T1D [7]. Consistent with the localization of PCs and 
LPCs, PLA2G6 was also enriched, as demonstrated by 
combining fluorescent in situ hybridization (mouse islets 
and MIN6 cells) and immunohistochemistry (mouse 
islets) (Fig. 2b, c). Insulin immunofluorescence was used 
as a marker for β cells (Fig.  2b). Taken together, our 
data support the notion that the generation of LPCs is 
mediated by phospholipases, such as PLA2G6, which is 
enriched in islets compared to the surrounding tissue.

PLA2G6‑dependent cytokine regulation in MIN6 cells
PLA2G6-mediated cleavage of PC results in generation of 
LPC and fatty acids, many with distinct biological activi-
ties, such as ω-6 and ω-3 FAs. Therefore, we studied the 
PLA2G6-dependent cytokine signaling landscape in 
mouse MIN6 cells. For this, we performed global prot-
eomics of untreated control (NoCT) cells (nontargeting 
vs. Pla2g6 siRNA) treated with cytokine cocktail 2 (CT2: 
IL-1β + INF-γ + TNFα) for 24 h. We observed that the 
CT2 treatment led to changes in abundance of 1043 out of 
the 5212 identified and quantified proteins (Fig. 3a, Table 
S12). A functional enrichment analysis of the differentially 
regulated proteins revealed that 52 KEGG pathways were 
regulated by the cytokine treatment (Fig. 3b). Only a small 
fraction of the cytokine-regulated proteins, 35 proteins, 
were depended on PLA2G6 (Fig. 3c, Table S13). Among 
these proteins, the expression of cathepsin Z and cathep-
sin B, lysosome protease marker, was significantly upregu-
lated with the CT2 treatment, but this upregulation was 
abolished in the Pla2g6 siRNA group (Fig. 3d, e). Overall, 
the analysis showed a strong regulation of the MIN6 cell 
proteome by cytokines, of which a small subset of pro-
teins depended on PLA2G6.

Regulation of poly(ADP)ribosylation proteins by PLA2G6
Among the PLA2G6-dependent cytokine-regulated pro-
teins, ADP-ribosylhydrolase ARH3 (Adprhl2 gene) removes 
ADP-ribosylation from proteins. ADP-ribosylation induces 
β-cell death in mice [35]. Therefore, we investigated the 
abundance profiles of other enzymes involved in ADP-
ribosylation within the proteomics data: PAR polymerases 
(PARP), PAR glycohydrolases (PARG), MacroD1, MacroD2, 
terminal ADP-ribose protein glycohydrolase 1 (TARG1) and 
ADP-ribosylhydrolases (ARHs). PARP1 abundance signifi-
cantly decreased by approximately 35% in both Pla2g6 and 

nontargeting siRNA groups when treated with CT, whereas 
PARP2 levels were not affected (Fig.  4a, b). Conversely, 
PARP3, − 9, − 10, − 12, and − 14 were strongly upregulated 
(> 5 fold) when cells were treated with CT2 in both Pla2g6 
and nontargeting siRNA groups (Fig. 4c-g). Among the PAR 
hydrolases, only ARH3 and MacroD1 were detected, show-
ing a statistical increase in abundance of ARH3 by 66% and 
no statistically significant change in MacroD1 with CT2 
treatment (Fig. 4h, i). Specifically, ARH3 levels were statis-
tically reduced in Pla2g6 siRNA compared to CT2-nontar-
geting siRNA group, indicating a regulation of ARH3 by 
PLA2G6 (Fig.  4i). Concurrently, we investigated the effect 
of PLA2G6 on the PARP-regulated apoptosis, by assessing 
the abundance of apoptosis-inducing factor (AIFm2), mac-
rophage migration inhibitory factor (MIF) and caspase 3 
levels [36, 37]. We observed that AIFm2 levels in the CT2-
Pla2g6 siRNA group statistically increased by 62% com-
pared to CT2, but no change in the abundance of MIF, the 
binding partner of AIF, was observed. The total caspase 
3 level was significantly high post-CT2 treatment, which 
further showed an increased trend of 22% in the absence 
of PLA2G6 (Fig. 4j-l). This, in combination with a reduced 
level of ARH3 in CT2-siPLA2G6 group, indicates PARP-
mediated apoptosis in β cells.

We tested the effects of ARH3 in cytokine-mediated 
apoptosis by knocking down Adprhl2 (Arh3 siRNA) 
and performed western blots for cleaved caspase 3, 
as a marker of apoptosis. A 65–70% knockdown effi-
ciency was obtained in Arh3 siRNA cells (Fig.  5a, b). 
The CT2 treatment significantly increased the expres-
sion of cleaved caspase 3 by ~ 8.8-fold in the nontarget-
ing siRNA compared to the NoCT group (Fig. 5c). In the 
Arh3 siRNA group, the basal level of cleaved caspase 3 
was high, but the levels significantly increased further by 
1.75-fold upon CT2 treatment compared CT-NT group, 
confirming the protective function of ARH3 against 
cytokine-induced mouse β-cells death.

Regulation of Arh3 expression by SUZ12 through lipid 
signaling
In our proteomic analysis, the level of SUZ12, a compo-
nent of histone methyltransferase polycomb complex 2 
(PRC2), was statistically decreased in the CT2-treated 
group but not in CT2-siPLA2G6, indicating SUZ12 is 
regulated in a PLA2G6-dependent manner (Fig.  6a). As 
SUZ12 and by extension, PRC2 is a known gene suppres-
sor, we investigated the role of SUZ12 in the PLA2G6-
ARH3 signaling pathway.

The ChIP-atlas database showed the binding of SUZ12 
and enrichment of histone H3K27 trimethylation at the 
transcription start site of Adprhl2 gene in both mice 
and humans (Fig. 6b). Reanalysis of our previously pub-
lished H3K27ac ChIP data from CT1-treated human 
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islets indicated a minute enrichment of H3K27ac at the 
Adprhl2 transcription start site (Fig.  6c) [19]. To test 
if a decrease in SUZ12 was responsible for enhancing 
Adprhl2 expression, we knockdown Suz12 and assayed 

its and Adprhl2 expression by qPCR. The knockdown 
experiment significantly reduced the expression of 
Suz12 by 50% and increased Adprhl2 expression by 40% 
(Fig. 6d, e).

Fig. 3 Pro‑inflammatory cytokines and Pla2g6‑dependent proteome remodeling in MIN6 cells. a Cytokine cocktail CT2 
(IL‑1β + IFN‑γ + TNFα)‑dependent protein expression in Pla2g6 siRNA (siPla2g6) MIN6 cells (n = 5, +SD). Nontarget siRNA was used as a transfection 
control. b KEGG pathways enriched with proteins differentially abundant in IL‑1β + IFN‑γ‑treated MIN6 cells. Pathways were grouped based 
on shared proteins using Enrichment Map tool in Cytoscape [30]. Each pathway is represented by a node, and their degree of connectivity 
(thickness of the edges) is proportional to the number of shared proteins between the pathways. c Pla2g6‑dependent protein abundance changes 
of CT2‑treated MIN6 cells. Abundance profiles of cathepsin Z (d), cathepsin B (e). Statistical test: ** p ≤ 0.01 and *** p ≤ 0.001 by 2way‑ANOVA 
and “Šídák’s multiple comparisons test
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Fig. 4 Regulation of ADP‑ribosylation enzymes by pro‑inflammatory cytokines and Phospholipase enzyme. A‑K Cytokine cocktail CT2 
(IL‑1β + IFN‑γ + TNFα)‑dependent protein expression of ADP‑ribosylation enzymes and PARP‑mediated apoptosis markers in Pla2g6 siRNA (siPla2g6) 
MIN6 cells (n = 5, +SD). Statistical test: * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001 by 2wayANOVA and “Šídák’s multiple comparisons test
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Dimri et  al. showed that ω-3 fatty acids, such as doc-
osahexaenoic and eicosapentaenoic acids, cause the 
degradation of SUZ12 and consequently enhance the 
expression of PRC2’s target genes [38]. As PLA2G6 
can cleave PC-PUFA into LPCs and ω-3 fatty acids, we 
hypothesized that docosahexaenoic and eicosapentae-
noic acids produced upon cytokine-mediated activation 
of PLA2G6 causes degradation of SUZ12, enhancing 

ARH3 expression by reducing trimethylation at the 
Adprhl2 transcription start site. To test this hypothesis, 
we treated MIN6 cells with docosahexaenoic and eicosa-
pentaenoic acids in the presence or absence of CT2 for 
8 h. Western blot analysis showed that docosahexae-
noic acid significantly reduces the abundance of SUZ12 
by 25% in the presence of CT2 (Fig. 6f ). Concomitantly, 
Adprhl2 expression increased by 50% when treated with 

Fig. 5 ARH3 regulates cytokine‑mediated β‑cell apoptosis. Western blot analysis of ARH3 siRNA (siARH3) MIN6 cells treated with cytokines (a) 
(BR: Biological replicates). b, c relative levels of ARH3 (b) and cleaved caspase 3 (c) bands normalized to LAMINB1. To ensure reproducibility, we 
performed 3 independent experiments. Statistical test: * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001 by 2wayANOVA and “Šídák’s multiple comparisons 
test
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docosahexaenoic acid in a similar trend with CT2 treat-
ment or docosahexaenoic acid /CT2 combined (Fig. 6g). 
These results unraveled an intricate lipid signaling mech-
anism that increases ARH3 protein level in β cells to pro-
tect them against cytokine-mediated apoptosis via ω-3 
fatty acid-induced SUZ12 downregulation, which in turn 
causes de-repression of the Adprhl2 gene.

Effect of omega 3 fatty acids on MIN6 cells
To test the effect of ω-3 fatty acids on cell apoptosis, 
we performed a caspase 3/7 assay in cytokine-treated 
parental and Pla2g6 RNAi MIN6 cells pre-treated with 
docosahexaenoic and eicosapentaenoic acids. Cells were 
incubated with docosahexaenoic and eicosapentae-
noic acids for 48 h and then treated for 24 h with CT2. 
Eicosapentaenoic acid reduced CT2-mediated apopto-
sis by 75%, whereas docosahexaenoic acid reduced it by 
56% (Fig. 7a). This reduction was partially dependent on 
PLA2G6, as the eicosapentaenoic acid treatment only 
reduced apoptosis of Pla2g6 RNAi by 60%, which is sig-
nificantly less than in the parental cells (Fig. 7a). Similar 
trend was observed for the docosahexaenoic acid treat-
ment, although it did not reach significance (Fig.  7a). 
These results show that ω-3 fatty acids protect cells 
against pro-inflammatory cytokine-mediated apoptosis 
and that this protection is at least partially dependent on 
PLA2G6.

Discussion
We investigated the remodeling of islet and β-cell lipid 
composition in response to inflammatory mediators 
relevant to the pathogenesis of T1D. To increase the 
confidence of our findings, we performed lipidomic 
analysis across three insulitis models: EndoC-βH1 cells 
and human islets exposed to the cytokines IL-1β + INF-γ, 
and islets from NOD mice at the pre-diabetic stage. This 
analysis identified key common changes in lipid compo-
sition: downregulation of TGs and upregulation of PCs 
and LPCs with long unsaturated fatty acid chains. Similar 
observation regarding TGs was reported previously by 

Oresic et  al., and Sorenson et  al. [39, 40], however, cer-
tain PCs and LPC species were observed to be decreased. 
It is worth noting that, both studies were done using 
serum/plasma from humans at different stages of the dis-
ease, which differs from our experimental model. TGs are 
decreased in rat β cells by CT2, likely to accommodate 
the increased energetic demands [41]. Also, increases in 
cellular TG content have been associated with protec-
tion of rat β cells against the cytotoxic effects of saturated 
free fatty acids [42]. However, deeper investigations are 
needed for a better understanding the roles of TGs in 
T1D development.

The relative increase of PCs with PUFA might be 
due to an increase in fatty acid oxidation and turno-
ver induced by cytokines, as has been shown in mus-
cles [43] combined with a slower turnover of very long 
and unsaturated fatty acids [44]. PUFAs are not readily 
metabolized to supply energetic demands as their degra-
dation requires additional metabolic steps compared to 
shorter saturated fatty acids [45]. The increase of LPCs 
in insulitis is due to the activity of phospholipases, such 
as the PLA2G6, on their precursors, phosphatidylcho-
lines, which has been shown to play a role in the β-cell 
death [43]. This reaction also releases PUFAs, which are 
associated with both protection [46] and apoptosis of β 
cells in response pro-inflammatory cytokines [43]. ω-6 
PUFAs are known precursors of immunomediators, such 
as prostaglandins, leukotrienes, and thromboxanes [47]. 
Some of these immunomediators have anti-inflammatory 
properties, while others are known to induce inflam-
mation and apoptosis. For instance, processing of ara-
chidonic acid into 12-HETE by 12-lipoxygenase causes 
β-cell death [48]. This release of the arachidonic acid 
from the β-cell membrane induced by cytokines is cata-
lyzed by PLA2G6 [49].

Protective ω-3 fatty acids can also be released by 
PLA2G6. Dennis et al. has shown that the release of ω-3 
and ω-6 fatty acids by PLA2G6 depends on their avail-
ability in the plasma membrane [50]. In fact, reducing 
the ω-6/ω-3 ratio has been shown to protect INS-1 β 

(See figure on next page.)
Fig. 6 Regulation of the ARH3 gene Adprhl2 expression by ω‑3 fatty acids and SUZ12. a SUZ12 protein expression in Pla2g6 siRNA (siPla2g6) 
MIN6 cells with cytokine cocktail CT2 (IL‑1β + IFN‑γ + TNFα) treatment (n = 5, +SD). b ChIPseq mouse (mm9) and human (hg19) data were 
retrieved from ChIP‑atlas database (https:// chip‑ atlas. org/ peak_ brows er). The individual line represents independent studies reporting 
enrichment of SUZ12 (Green) and H3K27me3 (Pink) at ADPRHL2 transcriptional start site (TSS). c Representative western blot image and relative 
level of SUZ12 protein normalized to Actin post CT2 and ω‑6 (arachidonic acid ‑ AA & linoleic acid ‑ LA) and ω‑3 (eicosapentaenoic acid 
‑ EPA & docosahexaenoic acid ‑ DHA) fatty acid treatment (n = 3–4, +SD). Ethanol (Eth) was used as solvent control for the fatty acids (FAs). 
d Adprhl2 mRNA expression post‑CT2 and ω‑3 FA (EPA and DHA) treatment (n = 3–4, +SD). e, f Suz12 and Adprhl2 mRNA expression in Min6 
cells with Suz12 siRNA (siSuz12) (n = 3–4, +SD). g Re‑analyzed H3K27ac ChIPseq data of CT1 (IL‑1β + IFN‑γ) treated Human islets [19]. *p ≤ 0.05 
for A was calculated by 2wayANOVA and Šídák’s multiple comparison test, for C students’ t‑test, D one‑way ANOVA followed by Šídák’s multiple 
comparisons test, and for F & G, students’ t‑test was used. Specifically, the normality and outlier test for the molecular experiment were tested 
using “The shapiro‑Wilk test” and Dixon’s test, with a threshold of p < 0.2, respectively

https://chip-atlas.org/peak_browser
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Fig. 6 (See legend on previous page.)
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cells against cytokine-induced apoptosis [46]. Moreo-
ver, increased content of ω-3 fatty acids fatty acids in 
erythrocyte membranes has been shown to be associ-
ated with reduced risk of developing islet autoimmunity 
[47]. Therefore, shifting the fatty acid composition on the 
β-cell membrane may shift the balance towards protec-
tion against apoptotic signaling. Diet containing ω-3 fatty 
acids reduces the risk of islet autoimmunity in children 
[15] and the incidence of diabetes in NOD mice [14]. 
ω-3 fatty acids have been shown to reduce activation of 
T cells and macrophages [14, 51] and to ameliorate the 
intestinal barrier [52] in NOD mice, but their action on β 
cells is not well understood.

Here we show that ω-3 fatty acids regulate antiapop-
totic signals by downregulating SUZ12, a component of 
the histone methylation polycomb PCR2, and upregulat-
ing the expression of the ADP-ribosylhydrolase ARH3 
(Fig. 8). This protection was at least partially dependent 
on PLA2G6, indicating that at least part of the ω-3 fatty 
acids are released from membranes. Regarding ARH3, 
it hydrolyzes ADP-ribosylation from serine residues, 
counterbalancing the pro-apoptotic activity induced by 

ADP-ribose polymerization during oxidative stress [53–
55]. Indeed, ADP-ribosylation has a role in β-cell death; 
in murine islets, PARP1 induces cytokine-mediated β-cell 
death, and its deletion protects against streptozotocin-
mediated diabetes [35, 56, 57]. Our data show that this 
scenario might be more complex as PARP3, − 9, − 10, 
− 12, and − 14 are strongly upregulated in cells treated 
with CT2. PARP-1-, PARP-9 and PARP14-mediated 
ADP-ribosylation enhance the activity of central pro-
inflammatory transcription factors, such as NF-κB, 
NFATc3, and STAT1, in immune cells, playing an impor-
tant role in the inflammatory signaling [58–60]. However, 
the role of the different proteins of the ADP-ribosyla-
tion machinery in β-cell death still needs to be further 
studied.

In summary, our data showed a consistent regula-
tion of lipid metabolism in 3 different models of insuli-
tis, including increase of PCs with PUFAs and LPCs, and 
decrease of TGs. These PCs with PUFAs were enriched 
in ω-3 fatty acids, which led us to study possible effects 
of their release by phospholipases, in this case PLA2G6. 
We demonstrated that phospholipase PLA2G6/ω-3 fatty 

Fig. 7 Protective effect of ω‑3 fatty acids against cytokine‑induced apoptosis. Apoptosis was measured by caspase3/7 activity in MIN6 cells treated 
with ω‑3 fatty acids or ethanol (Eth) and PLA2G6 siRNA (siPLA2G6) for 48 h followed by 24 h of cytokine cocktail CT2 (IL‑1β + IFN‑γ + TNFα) treatment 
(n = 4, +SD). *p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001 and ****p ≤ 0.0001 by 2wayANOVA and “Uncorrected Fisher’s LSD” test. Specifically, the normality 
and outlier test for the molecular experiment were tested using “The shapiro‑Wilk test” and Dixon’s test, with a threshold of p < 0.2, respectively
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acid signaling leads to the downregulation of SUZ12 and 
consequent upregulation of the ADP-ribosylhydrolase 
ARH3, which in turn reduces cytokine-induced apoptosis 
of MIN6 cells. These findings shed a light on the mecha-
nism on how ω-3 fatty acids protect β cells and reduce 
the development of T1D.
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Additional file 1: Figure S1. Abundance of selected proteins from 
proteomics analysis of 3 common models used for the study of β‑cell 
stress in type 1 diabetes: A EndoC‑βH1 cells exposed to IL‑1β and INF‑γ for 
48 h (n = 3), B human islets exposed to same cytokines for 24 h (n = 10) 
and C islets from non‑obese diabetic (NOD) mice in pre‑diabetic stage 
(6 weeks of age) vs. age‑matched NOR mice (n = 3). Abbreviations: GBP2: 
interferon‑induced guanylate‑binding protein 2, Stat1: signal transducer 
and activator of transcription 1, TAP1: antigen peptide transporter 1. 
Statistical test: ** p ≤ 0.01 and *** p ≤ 0.001 by t‑test considering equal 
distribution and variance.

Fig. 8 Protective mechanism of ω‑3 fatty acids against cytokine‑induced apoptosis. The schematic model represents cytokine‑mediated hydrolysis 
of phosphatidylcholine by PLA2G6, giving rise to ω‑3 fatty acids, which protect β cells by reducing ADP‑ribosylation through upregulating ARH3 
expression via SUZ12
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analysis of islets from NOD and NOR mice at 6 weeks of age. Table S5. 
Differentially abundant proteins found in the quantitative proteomics 
analysis of islets from NOD and NOR mice at 6 weeks of age. Table S6. 
Quantitative lipidomics analysis in the negative‑ionization mode of 
the EndoC‑βH1 cells (n = 4) treated with 50 U/mL IL‑1β + 1000 U/mL 
IFN‑γ for 48 h. Table S7. Quantitative lipidomics analysis in the positive‑
ionization mode of the EndoC‑βH1 cells (n = 4) treated with 50 U/mL 
IL‑1β + 1000 U/mL IFN‑γ for 48 h. Table S8. Quantitative lipidomics analysis 
in the negative‑ionization mode of the human islets (n = 10) treated 
with 50 U/mL IL‑1β + 1000 U/mL IFN‑γ for 24 h. Table S9. Quantitative 
lipidomics analysis in the positive‑ionization mode of the human islets (n 
= 10) treated with 50 U/mL IL‑1β + 1000 U/mL IFN‑γ for 24 h. Table S10. 
Quantitative lipidomics analysis in the negative‑ionization mode of islets 
from 6‑weeks old NOD vs. NOR mice. Table S11. Quantitative lipidomics 
analysis in the positive‑ionization mode of islets from 6‑weeks old NOD vs. 
NOR mice. Table S12. Quantitative proteomics analysis of wild‑type and 
Pla2g6 knockdown MIN6 beta cells treated with cytokines (100 ng/mL IFN‑
γ, 10 ng/mL TNF‑α, and 5 ng/mL IL‑1β) for 24 h. Table S13. Identification 
of proteins that the abundances are regulated by cytokines via PLA2G6. 
Wild‑type and Pla2g6 knockdown MIN6 beta cells treated with cytokine 
cocktail CT2 (100 ng/mL IFN‑γ, 10 ng/mL TNF‑α, and 5 ng/mL IL‑1β) for 
24 h were analyzed by proteomics. The criteria for selecting PLA2G6‑
dependent cytokine‑regulated proteins were: (i) significantly regulated 
by the cytokine treatment (untreated wild type vs. wild type treated with 
cytokines), (ii) this regulation also had to be significant comparing wild 
type treated with cytokines vs. Pla2g6 knockdown treated with cytokines, 
and (iii) not significantly changing in untreated Pla2g6 knockdown vs. 
Pla2g6 knockdown treated with cytokines.

Acknowledgments
The authors thank the NIDDK‑supported Integrated Islet Distribution Program (IIDP) 
for providing the human islets used in the study. Work was performed in the Environ‑
mental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national 
scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, WA. 
Battelle operates PNNL for the DOE under contract DE‑AC05‑76RLO01830.

Authors’ contributions
E.S.N., L.S., C.A. conceived the study and participated in the study design. 
E.S.N., S.S., M.G., J.K., D.S., C.D., R.Y., X.L., Y.C., C.N., F.S., and J.J.M. performed the 
experiments. All the authors performed the data analysis. E.S.N., S.S., R.Y., Y.C., 
B.J.W.R., J.L., L.S. and C.A. wrote the manuscript. All authors read, revised, and 
approved the final manuscript for publication.

Funding
This work was supported by National Institutes of Health, National Institute of 
Diabetes and Digestive and Kidney Diseases (NIDDK) grants U01 DK127505 
(to L.S. and E.S.N.), UC4 DK108101 (to C.A. and L.S.), UC4 DK104166 (to R.G.M, 
C.E. M., D.L.E, and T.O.M.), U01 DK127786 (to R.G.M, C.E. M., D.L.E, B.J.M.W.R and 
T.O.M.), R01 DK105588 (to R.G.M.) R01 DK126444 (to D.L.E.) and R01 DK093954 
(to C.E.M); VA Merit Award I01BX001733 (to C.E.M.); Fonds National de la 
Recherche Scientifique (FNRS), Welbio CR‑2015A‑06, Belgium (to D.L.E.); a 
JDRF Strategic Research Agreement (to C.E.M and R.G.M.) and gifts from the 
Sigma Beta Sorority, the Ball Brothers Foundation, the George and Frances Ball 
Foundation, and the Holiday Management Foundation (to C.E.M and R.G.M.). 
F.S. was supported by JDRF postdoctoral fellowship (3‑PDF‑2016‑199‑A‑N) 
and JDRF career development Award (JDRF 5‑CDA‑2022‑1176‑A‑N). D.L.E. also 
received funds from a JDRF Strategic Research Agreement. E.S.N. was also sup‑
ported by NIDDK grant U54 DK127823, Human Islet Research Network Catalyst 
Award, and by the Laboratory Directed Research and Development Program 
at Pacific Northwest National Laboratory, a multiprogram national labora‑
tory operated by Battelle for the U.S. Department of Energy and Exploratory 
Research Seed Grant funding from the OHSU School of Medicine.

Availability of data and materials
Proteomics data were deposited into the Pride repository (www. ebi. ac. uk/ 
pride) under accession number PXD017863, PXD021501 and PXD021475. 

Lipidomics data were deposited into the Massive repository (http:// massi ve. 
ucsd. edu/) under accession number MSV000086174.
Pla2g6‑dependent cytokine signaling in MIN6 cells.
Project number: PXD017863.
Reviewer account details:
Username: revie wer04 836@ ebi. ac. uk
Password: B4o1VcPd.
ARH3‑regulated cytokine signaling in MIN6 cells.
Project accession: PXD021501.
Reviewer account details:
Username: revie wer_ pxd02 1501@ ebi. ac. uk
Password: NbhKnd9N.
Proteomics analysis of islets of 6‑week old NOR and NOD mice.
Project accession: PXD021475.
Reviewer account details:
Username: revie wer_ pxd02 1475@ ebi. ac. uk
Password: tKFfLzrh.
Lipidomics of 3 models of insulitis, beta‑cell stress and type 1 diabetes 
development.
Project accession: MSV000086174.
Reviewer account details:
Username: MSV000086174_reviewer.
Password: Islets3663.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Biological Sciences Division, Pacific Northwest National Laboratory, Richland, 
WA 99354, USA. 2 Barbara Davis Center for Diabetes, University of Colorado 
Anschutz Medical Center, Aurora, CO 80045, USA. 3 Department of Chemis‑
try, Purdue University, West Lafayette, IN 47907‑2084, USA. 4 Environmental 
and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 
Richland, WA 99354, USA. 5 NanoString Technologies, Seattle, WA 98109, USA. 
6 Endocrine Regulatory Genomics, Department of Experimental & Health Sci‑
ences, University Pompeu Fabra, 08003 Barcelona, Spain. 7 Center for Diabetes 
and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, 
Indiana University School of Medicine, Indianapolis, IN 46202, USA. 8 ULB 
Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070 Brus‑
sels, Belgium. 9 Centre for Genomic Regulation (CRG), The Barcelona Institute 
of Science and Technology, 08003 Barcelona, Spain. 10 Kovler Diabetes Center 
and Department of Medicine, The University of Chicago, Chicago, IL 60637, 
USA. 11 Department of Biostatistics and Informatics, University of Colorado 
Anschutz Medical Center, Aurora, CO 80045, USA. 

Received: 9 August 2023   Accepted: 12 December 2023

References
 1. DiMeglio LA, Evans‑Molina C, Oram RA. Type 1 diabetes. Lancet. 

2018;391:2449–62.
 2. Huo L, Harding JL, Peeters A, Shaw JE, Magliano DJ. Life expectancy of 

type 1 diabetic patients during 1997‑2010: a national Australian registry‑
based cohort study. Diabetologia. 2016;59:1177–85.

 3. Verges B. Lipid disorders in type 1 diabetes. Diabetes Metab. 
2009;35:353–60.

 4. Lamichhane S, Ahonen L, Dyrlund TS, Kemppainen E, Siljander H, Hyoty 
H, Ilonen J, Toppari J, Veijola R, Hyotylainen T, et al. Dynamics of plasma 
Lipidome in progression to islet autoimmunity and type 1 diabetes ‑ type 
1 diabetes prediction and prevention study (DIPP). Sci Rep. 2018;8:10635.

http://www.ebi.ac.uk/pride
http://www.ebi.ac.uk/pride
http://massive.ucsd.edu/
http://massive.ucsd.edu/
mailto:reviewer04836@ebi.ac.uk
mailto:reviewer_pxd021501@ebi.ac.uk
mailto:reviewer_pxd021475@ebi.ac.uk


Page 16 of 17Sarkar et al. Cell Communication and Signaling          (2024) 22:141 

 5. Oresic M, Gopalacharyulu P, Mykkanen J, Lietzen N, Makinen M, Nygren 
H, Simell S, Simell V, Hyoty H, Veijola R, et al. Cord serum lipidome 
in prediction of islet autoimmunity and type 1 diabetes. Diabetes. 
2013;62:3268–74.

 6. Syed I, Rubin de Celis MF, Mohan JF, Moraes‑Vieira PM, Vijayakumar A, 
Nelson AT, Siegel D, Saghatelian A, Mathis D, Kahn BB. PAHSAs attenu‑
ate immune responses and promote beta cell survival in autoimmune 
diabetic mice. J Clin Invest. 2019;129:3717–31.

 7. Bone RN, Gai Y, Magrioti V, Kokotou MG, Ali T, Lei X, Tse HM, Kokotos G, 
Ramanadham S. Inhibition of Ca2+−independent phospholipase A2beta 
(iPLA2beta) ameliorates islet infiltration and incidence of diabetes in NOD 
mice. Diabetes. 2015;64:541–54.

 8. Dobrian AD, Morris MA, Taylor‑Fishwick DA, Holman TR, Imai Y, Mirmira 
RG, Nadler JL. Role of the 12‑lipoxygenase pathway in diabetes patho‑
genesis and complications. Pharmacol Ther. 2019;195:100–10.

 9. Barbour SE, Nguyen PT, Park M, Emani B, Lei X, Kambalapalli M, Shultz JC, 
Wijesinghe D, Chalfant CE, Ramanadham S. Group VIA phospholipase A2 
(iPLA2beta) modulates Bcl‑x 5′‑splice site selection and suppresses anti‑
apoptotic Bcl‑x(L) in beta‑cells. J Biol Chem. 2015;290:11021–31.

 10. Lei X, Bone RN, Ali T, Zhang S, Bohrer A, Tse HM, Bidasee KR, Ramanadham 
S. Evidence of contribution of iPLA2beta‑mediated events during islet 
beta‑cell apoptosis due to proinflammatory cytokines suggests a role for 
iPLA2beta in T1D development. Endocrinology. 2014;155:3352–64.

 11. Ma Z, Ramanadham S, Corbett JA, Bohrer A, Gross RW, McDaniel ML, Turk 
J. Interleukin‑1 enhances pancreatic islet arachidonic acid 12‑lipoxyge‑
nase product generation by increasing substrate availability through a 
nitric oxide‑dependent mechanism. J Biol Chem. 1996;271:1029–42.

 12. Chambers KT, Weber SM, Corbett JA. PGJ2‑stimulated beta‑cell apoptosis 
is associated with prolonged UPR activation. Am J Physiol Endocrinol 
Metab. 2007;292:E1052–61.

 13. Margina D, Ungurianu A, Purdel C, Nitulescu GM, Tsoukalas D, Sarandi E, 
Thanasoula M, Burykina TI, Tekos F, Buha A, et al. Analysis of the intricate 
effects of polyunsaturated fatty acids and polyphenols on inflammatory 
pathways in health and disease. Food Chem Toxicol. 2020;143:111558.

 14. Bi X, Li F, Liu S, Jin Y, Zhang X, Yang T, Dai Y, Li X, Zhao AZ. Omega‑3 poly‑
unsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J 
Clin Invest. 2017;127:1757–71.

 15. Norris JM, Yin X, Lamb MM, Barriga K, Seifert J, Hoffman M, Orton HD, 
Baron AE, Clare‑Salzler M, Chase HP, et al. Omega‑3 polyunsaturated fatty 
acid intake and islet autoimmunity in children at increased risk for type 1 
diabetes. JAMA. 2007;298:1420–8.

 16. Eizirik DL, Pasquali L, Cnop M. Pancreatic beta‑cells in type 1 and type 
2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 
2020;16:349–62.

 17. Beilke JN, Kuhl NR, Van Kaer L, Gill RG. NK cells promote islet allograft tol‑
erance via a perforin‑dependent mechanism. Nat Med. 2005;11:1059–65.

 18. Nakayasu ES, Syed F, Tersey SA, Gritsenko MA, Mitchell HD, Chan CY, 
Dirice E, Turatsinze JV, Cui Y, Kulkarni RN, et al. Comprehensive proteomics 
analysis of stressed human islets identifies GDF15 as a target for type 1 
diabetes intervention. Cell Metab. 2020;31:363–374 e366.

 19. Ramos‑Rodriguez M, Raurell‑Vila H, Colli ML, Alvelos MI, Subirana‑Granes 
M, Juan‑Mateu J, Norris R, Turatsinze JV, Nakayasu ES, Webb‑Robertson 
BM, et al. The impact of proinflammatory cytokines on the beta‑cell regu‑
latory landscape provides insights into the genetics of type 1 diabetes. 
Nat Genet. 2019;51:1588–95.

 20. Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y, 
Yamamura K. Establishment of a pancreatic beta cell line that retains 
glucose‑inducible insulin secretion: special reference to expression of 
glucose transporter isoforms. Endocrinology. 1990;127:126–32.

 21. Ishihara H, Asano T, Tsukuda K, Katagiri H, Inukai K, Anai M, Kikuchi M, 
Yazaki Y, Miyazaki JI, Oka Y. Pancreatic beta cell line MIN6 exhibits charac‑
teristics of glucose metabolism and glucose‑stimulated insulin secretion 
similar to those of normal islets. Diabetologia. 1993;36:1139–45.

 22. Nakayasu ES, Nicora CD, Sims AC, Burnum‑Johnson KE, Kim YM, Kyle JE, 
Matzke MM, Shukla AK, Chu RK, Schepmoes AA, et al. MPLEx: a robust 
and universal protocol for single‑sample integrative proteomic, Metabo‑
lomic, and Lipidomic Analyses. mSystems. 2016;1

 23. Dautel SE, Kyle JE, Clair G, Sontag RL, Weitz KK, Shukla AK, Nguyen SN, Kim 
YM, Zink EM, Luders T, et al. Lipidomics reveals dramatic lipid composi‑
tional changes in the maturing postnatal lung. Sci Rep. 2017;7:40555.

 24. Pluskal T, Castillo S, Villar‑Briones A, Oresic M. MZmine 2: modular frame‑
work for processing, visualizing, and analyzing mass spectrometry‑based 
molecular profile data. BMC Bioinformatics. 2010;11:395.

 25. Cox J, Mann M. MaxQuant enables high peptide identification rates, 
individualized p.p.b.‑range mass accuracies and proteome‑wide protein 
quantification. Nat Biotechnol. 2008;26:1367–72.

 26. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, 
Selbach M. Global quantification of mammalian gene expression control. 
Nature. 2011;473:337–42.

 27. Polpitiya AD, Qian WJ, Jaitly N, Petyuk VA, Adkins JN, Camp DG 2nd, 
Anderson GA, Smith RD. DAnTE: a statistical tool for quantitative analysis 
of ‑omics data. Bioinformatics. 2008;24:1556–8.

 28. Clair G, Reehl S, Stratton KG, Monroe ME, Tfaily MM, Ansong C, Kyle JE. 
Lipid Mini‑on: mining and ontology tool for enrichment analysis of lipid‑
omic data. Bioinformatics. 2019;35:4507–8.

 29. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analy‑
sis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 
2009;4:44–57.

 30. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a 
network‑based method for gene‑set enrichment visualization and inter‑
pretation. PLoS One. 2010;5:e13984.

 31. Yin R, Burnum‑Johnson KE, Sun X, Dey SK, Laskin J. High spatial resolution 
imaging of biological tissues using nanospray desorption electrospray 
ionization mass spectrometry. Nat Protoc. 2019;14:3445–70.

 32. Cui Y, Hu D, Markillie LM, Chrisler WB, Gaffrey MJ, Ansong C, Sussel L, Orr 
G. Fluctuation localization imaging‑based fluorescence in situ hybridiza‑
tion (fliFISH) for accurate detection and counting of RNA copies in single 
cells. Nucleic Acids Res. 2018;46:e7.

 33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using 
real‑time quantitative PCR and the 2(−Delta Delta C(T)) method. Meth‑
ods. 2001;25:402–8.

 34. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox 
J. The Perseus computational platform for comprehensive analysis of 
(prote)omics data. Nat Methods. 2016;13:731–40.

 35. Andreone T, Meares GP, Hughes KJ, Hansen PA, Corbett JA. Cytokine‑
mediated beta‑cell damage in PARP‑1‑deficient islets. Am J Physiol 
Endocrinol Metab. 2012;303:E172–9.

 36. Mashimo M, Kato J, Moss J. ADP‑ribosyl‑acceptor hydrolase 3 regulates 
poly (ADP‑ribose) degradation and cell death during oxidative stress. Proc 
Natl Acad Sci U S A. 2013;110:18964–9.

 37. Liang T, Xu X, Ye D, Chen W, Gao B, Huang Y. Caspase/AIF/apoptosis 
pathway: a new target of puerarin for diabetes mellitus therapy. Mol Biol 
Rep. 2019;46:4787–97.

 38. Dimri M, Bommi PV, Sahasrabuddhe AA, Khandekar JD, Dimri GP. Dietary 
omega‑3 polyunsaturated fatty acids suppress expression of EZH2 in 
breast cancer cells. Carcinogenesis. 2010;31:489–95.

 39. Oresic M, Simell S, Sysi‑Aho M, Nanto‑Salonen K, Seppanen‑Laakso T, 
Parikka V, Katajamaa M, Hekkala A, Mattila I, Keskinen P, et al. Dysregulation 
of lipid and amino acid metabolism precedes islet autoimmunity in chil‑
dren who later progress to type 1 diabetes. J Exp Med. 2008;205:2975–84.

 40. Sorensen CM, Ding J, Zhang Q, Alquier T, Zhao R, Mueller PW, Smith RD, 
Metz TO. Perturbations in the lipid profile of individuals with newly diag‑
nosed type 1 diabetes mellitus: lipidomics analysis of a diabetes antibody 
standardization program sample subset. Clin Biochem. 2010;43:948–56.

 41. Kiely A, McClenaghan NH, Flatt PR, Newsholme P. Pro‑inflammatory 
cytokines increase glucose, alanine and triacylglycerol utilization but 
inhibit insulin secretion in a clonal pancreatic beta‑cell line. J Endocrinol. 
2007;195:113–23.

 42. Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relation‑
ship between cytotoxicity of free fatty acids in pancreatic islet cells and 
cellular triglyceride accumulation. Diabetes. 2001;50:1771–7.

 43. Lei X, Barbour SE, Ramanadham S. Group VIA Ca2+−independent phos‑
pholipase A2 (iPLA2beta) and its role in beta‑cell programmed cell death. 
Biochimie. 2010;92:627–37.

 44. Nakayasu ES, Gritsenko MA, Kim YM, Kyle JE, Stratton KG, Nicora CD, 
Munoz N, Navarro KM, Claborne D, Gao Y, et al. Elucidating regulatory 
processes of intense physical activity by multi‑omics analysis. Mil Med 
Res. 2023;10:48.

 45. Schonfeld P, Wojtczak L. Short‑ and medium‑chain fatty acids in energy 
metabolism: the cellular perspective. J Lipid Res. 2016;57:943–54.



Page 17 of 17Sarkar et al. Cell Communication and Signaling          (2024) 22:141  

 46. Wei D, Li J, Shen M, Jia W, Chen N, Chen T, Su D, Tian H, Zheng S, Dai Y, 
Zhao A. Cellular production of n‑3 PUFAs and reduction of n‑6‑to‑n‑3 
ratios in the pancreatic beta‑cells and islets enhance insulin secretion 
and confer protection against cytokine‑induced cell death. Diabetes. 
2010;59:471–8.

 47. Diaz Ludovico I, Sarkar S, Elliott E, Virtanen SM, Erlund I, Ramanadham 
S, Mirmira RG, Metz TO, Nakayasu ES. Fatty acid‑mediated signaling as a 
target for developing type 1 diabetes therapies. Expert Opin Ther Targets. 
2023;27:793–806.

 48. Tersey SA, Bolanis E, Holman TR, Maloney DJ, Nadler JL, Mirmira RG. 
Minireview: 12‑lipoxygenase and islet beta‑cell dysfunction in diabetes. 
Mol Endocrinol. 2015;29:791–800.

 49. Lei X, Zhang S, Emani B, Barbour SE, Ramanadham S. A link between 
endoplasmic reticulum stress‑induced beta‑cell apoptosis and the group 
VIA Ca2+−independent phospholipase A2 (iPLA2beta). Diabetes Obes 
Metab. 2010;12(Suppl 2):93–8.

 50. Norris PC, Dennis EA. Omega‑3 fatty acids cause dramatic changes in 
TLR4 and purinergic eicosanoid signaling. Proc Natl Acad Sci U S A. 
2012;109:8517–22.

 51. Davanso MR, Crisma AR, Braga TT, Masi LN, do Amaral CL, Leal VNC, de 
Lima DS, Patente TA, Barbuto JA, Correa‑Giannella ML, et al. Mac‑
rophage inflammatory state in type 1 diabetes: triggered by NLRP3/
iNOS pathway and attenuated by docosahexaenoic acid. Clin Sci (Lond). 
2021;135:19–34.

 52. Lo Conte M, Antonini Cencicchio M, Ulaszewska M, Nobili A, Cosorich I, 
Ferrarese R, Massimino L, Andolfo A, Ungaro F, Mancini N, Falcone M. A 
diet enriched in omega‑3 PUFA and inulin prevents type 1 diabetes by 
restoring gut barrier integrity and immune homeostasis in NOD mice. 
Front Immunol. 2022;13:1089987.

 53. Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I. Serine ADP‑
ribosylation reversal by the hydrolase ARH3. Elife. 2017:6.

 54. Abplanalp J, Leutert M, Frugier E, Nowak K, Feurer R, Kato J, Kistemaker 
HVA, Filippov DV, Moss J, Caflisch A, Hottiger MO. Proteomic analyses 
identify ARH3 as a serine mono‑ADP‑ribosylhydrolase. Nat Commun. 
2017;8:2055.

 55. Mashimo M, Bu X, Aoyama K, Kato J, Ishiwata‑Endo H, Stevens LA, 
Kasamatsu A, Wolfe LA, Toro C, Adams D, et al. PARP1 inhibition alleviates 
injury in ARH3‑deficient mice and human cells. JCI Insight. 2019:4.

 56. Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb 
H. Mice lacking the poly(ADP‑ribose) polymerase gene are resistant to 
pancreatic beta‑cell destruction and diabetes development induced by 
streptozocin. Nat Med. 1999;5:314–9.

 57. Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T, Jishage 
K, Watanabe T, Sugimoto T, Nakagama H, et al. Poly(ADP‑ribose) polymer‑
ase gene disruption conferred mice resistant to streptozotocin‑induced 
diabetes. Proc Natl Acad Sci U S A. 1999;96:2301–4.

 58. Iwata H, Goettsch C, Sharma A, Ricchiuto P, Goh WW, Halu A, Yamada 
I, Yoshida H, Hara T, Wei M, et al. PARP9 and PARP14 cross‑regulate 
macrophage activation via STAT1 ADP‑ribosylation. Nat Commun. 
2016;7:12849.

 59. Nie Y, Nirujogi TS, Ranjan R, Reader BF, Chung S, Ballinger MN, Englert 
JA, Christman JW, Karpurapu M. PolyADP‑Ribosylation of NFATc3 and 
NF‑kappaB transcription factors modulate macrophage inflammatory 
gene expression in LPS‑induced acute lung injury. J Innate Immun. 
2021;13:83–93.

 60. Verheugd P, Forst AH, Milke L, Herzog N, Feijs KL, Kremmer E, Kleine H, 
Luscher B. Regulation of NF‑kappaB signalling by the mono‑ADP‑ribosyl‑
transferase ARTD10. Nat Commun. 2013;4:1683.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Regulation of β-cell death by ADP-ribosylhydrolase ARH3 via lipid signaling in insulitis
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Mice
	Human pancreatic islet and EndoC-βH1 cells
	MIN6 cell line culture and treatment
	Lipidomic analysis
	Proteomic analysis
	Bioinformatics analysis
	Mass spectrometry imaging analysis
	Fluorescence in-situ hybridization (FISH)
	Tissue processing and immunohistochemistry
	Quantitative real-time PCR analysis
	Western blotting
	Apoptotic assay
	Data visualization and statistical analysis

	Results
	Lipidome analysis of insulitis models
	Spatial distribution of lipids and lipids metabolizing enzyme in islets
	PLA2G6-dependent cytokine regulation in MIN6 cells
	Regulation of poly(ADP)ribosylation proteins by PLA2G6
	Regulation of Arh3 expression by SUZ12 through lipid signaling
	Effect of omega 3 fatty acids on MIN6 cells

	Discussion
	Acknowledgments
	References


