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Abstract 

Background Malaria remains a global health burden, and the emergence and increasing spread of drug resist-
ance to current antimalarials poses a major challenge to malaria control. There is an urgent need to find new drugs 
or strategies to alleviate this predicament. Celastrol (Cel) is an extensively studied natural bioactive compound 
that has shown potentially promising antimalarial activity, but its antimalarial mechanism remains largely elusive.

Methods We first established the Plasmodium berghei ANKA-infected C57BL/6 mouse model and systematically 
evaluated the antimalarial effects of Cel in conjunction with in vitro culture of Plasmodium falciparum. The potential 
antimalarial targets of Cel were then identified using a Cel activity probe based on the activity-based protein profiling 
(ABPP) technology. Subsequently, the antimalarial mechanism was analyzed by integrating with proteomics and tran-
scriptomics. The binding of Cel to the identified key target proteins was verified by a series of biochemical experi-
ments and functional assays.

Results The results of the pharmacodynamic assay showed that Cel has favorable antimalarial activity both in vivo 
and in vitro. The ABPP-based target profiling showed that Cel can bind to a number of proteins in the parasite. Among 
the 31 identified potential target proteins of Cel, PfSpdsyn and PfEGF1-α were verified to be two critical target pro-
teins, suggesting the role of Cel in interfering with the de novo synthesis of spermidine and proteins of the parasite, 
thus exerting its antimalarial effects.

Conclusions In conclusion, this study reports for the first time the potential antimalarial targets and mechanism 
of action of Cel using the ABPP strategy. Our work not only support the expansion of Cel as a potential antimalarial 
agent or adjuvant, but also establishes the necessary theoretical basis for the development of potential antimalarial 
drugs with pentacyclic triterpenoid structures, as represented by Cel.
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Background
Malaria is a lethal infectious disease that seriously threat-
ens the health of approximately half of the world’s popu-
lation, with an estimated 619,000 people worldwide dying 
from malaria infection in 2021 [1]. In recent decades, the 
widespread use of artemisinin-based drugs has greatly 
accelerated the process of malaria elimination. However, 
the increasing reports of resistance to artemisinin (ART) 
and ART-based combination therapies (ACTs) in recent 
years have caused great concern and have also undoubt-
edly increased the burden of malaria control efforts [2, 
3]. Therefore, the development of new antimalarials with 
potential to alleviate the current predicament is highly 
desirable. Natural products have long been an impor-
tant source of novel antimalarials [4, 5]. Triterpenoids 
and their derivatives have been reported to have poten-
tial antimalarial activity and are considered potential lead 
compounds for novel antimalarials [6].

Celastrol (Cel), a pentacyclic triterpenoid natural 
product isolated from the traditional Chinese medicine 
Tripterygium wilfordii (“thunder god vine”), is consid-
ered one of the five traditional natural medicines most 
likely to be developed into a modern drug, with anti-
inflammatory, immunomodulatory, anti-tumor, and anti-
microbial activities [7–9]. Figueiredo et al. found that Cel 
inhibited the proliferation of Plasmodium falciparum (P. 
falciparum) at low uM concentrations in vitro [10]. Sub-
sequently, other studies have shown that Cel has poten-
tial antimalarial effects by possibly interfering with the P. 
falciparum fatty acid metabolism and inhibiting parasite 
Hsp90 [11, 12]. In addition, a recent study showed that 
Cel can synergize with ART by inhibiting the activity of 
parasite redox-related enzymes [13].

Despite decades of research, the critical antimalarial 
targets of Cel and the associated antimalarial mecha-
nisms of action are still not fully understood. To this end, 
a systematic series of investigations is needed. In the cur-
rent study, we first evaluated the antimalarial activity of 
Cel in vivo and in vitro. Subsequently, we identified the 
antimalarial targets of Cel using the activity-based pro-
tein profiling (ABPP) technique based on a Cel activity 
probe (Cel-P) previously developed by our group [14] 
and integrated with a combination of proteomics and 
transcriptomics analysis. A series of biochemical and 
functional validations were performed to establish the 
antimalarial mechanism of action of Cel. Overall, our 
study suggests that Cel can interfere with the process of 
spermine and protein synthesis in P. falciparum by bind-
ing to PfSpdsyn and PfEGF1-α, resulting in antimalarial 

effects. This work deepens our understanding of the 
antimalarial mechanism of Cel and opens up the possi-
bility of its development as a novel antimalarial agent or 
adjuvant.

Methods
Animal experiments
The in vivo antimalarial activity of Cel was investigated in 
P. berghei ANKA (PbANKA) infected mice as described 
previously [15]. The PbANKA strain was obtained from 
the Artemisinin Research Center of the China Acad-
emy of Chinese Medical Sciences. Infected red blood 
cells (iRBC) containing PbANKA parasites were inocu-
lated into C57BL/6 mice by intraperitoneal injection, 
and blood smears were collected daily to monitor para-
site growth by Giemsa staining. When the parasitemia 
reached 15–20%, blood from infected mice was col-
lected through the eyeball and counted. Finally, 1 ×  107 
iRBCs diluted with PBS were used for further inocula-
tion. Artesunate (ATS) treatment was used as a positive 
control. Four days after inoculation, infected mice were 
treated intraperitoneally with different drugs (Cel, ATS, 
Cel + ATS) and equal volume of solvent vehicles for 4 
days. Parasitemia, body temperature (rectal temepera-
ture) and behaviour were monitored daily. Finally, serum 
was collected for the determination of aspartate ami-
notransferase (AST) and alanine aminotransferase (ALT). 
The liver and spleen were weighed and fixed for histo-
logic examination by hematoxylin-eosin (H&E) staining.

Parasites culture
The parasite strains of P. falciparum 3D7 and Dd2 were 
obtained from the Artemisinin Research Center of the 
China Academy of Chinese Medical Sciences. The para-
site culture was the same as previously described with 
minor modifications [16, 17]. Briefly, the parasites were 
cultured in 50 mL malaria complete medium containing 
10.4 g/L RPMI1640, 0.5% albumin, 0.2 g/L gentamycin, 
25 μg/mL hypoxanthine, 0.3 g/L L-glutamine, 25 mmol/L 
HEPES, 2.5 g/L  NaHCO3 with 2% hematocrit at 37 °C. 
After several generations of culture, the parasites were 
synchronized twice in succession using 5% sorbitol. 
Giemsa staining was used to monitor the parasitemia. 
Parasitemia was maintained at ~ 8%.

Antimalarial activity in vitro assay
The 72 h fluorescent SYBR Green I assay was used to 
measure the antimalarial activity of Cel in  vitro [18]. 
First, 0.05% parasitemia and 2% hematocrit highly 
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synchronized ring stage parasites were seeded into 
96-well plates and treated with a series of dilutions of 
Cel. After incubation, the supernatant was removed and 
the lysate buffer containing SYBR Green I was added. 
Fluorescence intensity was measured using an Envision 
2105 Multimode Plate Reader (PerkinElmer). The half-
maximal inhibitory concentration  (IC50) and log-concen-
tration-response curves were analyzed using GraphPad 
Prism 8.

In situ fluorescence labeling
The fluorescence labeling was performed primarily as 
previously descripted [14]. Briefly, parasites were seeded 
in a 6-well plate and co-incubated with Cel-P for 4 h. 
For the competition assay, parasites were treated with 
excess Cel for 2 h before Cel-P was added for another 
2 h. Infected erythrocytes were then collected and lysed 
for protein extraction. The protein concentration was 
measured using the BCA kit (Beyotime, China). An equal 
amount of protein was used for the click chemistry reac-
tion. The proteins were then precipitated with pre-chilled 
acetone, redissolved, and separated by SDS-PAGE elec-
trophoresis. The Sapphire Biomolecular Imager (Azure 
Biosystems) was used to acquire fluorescence gel images 
and Coomassie Brilliant Blue was used as a loading con-
trol stain.

Intracellular imaging and immunofluorescence
The intracellular fluorescence imaging assay was per-
formed as previously reported [18]. Briefly, parasites 
were seeded in 24-well plates at 5% parasitemia with 2% 
hematocrit. The cells were fixed and dropped onto cover 
slides coated with poly-L-lysine and perforated. The click 
reaction was then carried out. For confocal imaging of 
the intracellular probe, the coverslides were inverted 
on a slide and Leica TCS SP8 SR confocal microscope 
was used for rapid imaging. For immunofluorescence, 
the corresponding antibodies were incubated after the 
click reaction. A Dragonfly 200 Spinning Disk Confocal 
Microscopy was used for immunofluorescence imag-
ing, and ImageJ software was used for semiquantitative 
analysis.

In situ pull‑down experiments
To identify the potential antimalarial target proteins of 
Cel, the pull-down experiments were performed [17]. The 
method of collecting parasite proteins after treatment is 
the same as the in situ fluorescence labeling. After quan-
tification, the soluble proteins were used for the click 
reaction. The proteins were then incubated with Neu-
travidin beads (Thermo Scientific) for enrichment. Then 
the proteins were reduced, alkylated and digested with 
trypsin. After digestion, the peptide-rich supernatant was 

desalted, spin-dried and labelled with Tandem Mass Tag 
(TMT) Labeling Reagents. Finally, the enriched peptides 
were analyzed by the LC-MS/MS. The proteins with fold 
change (FC) ≥ 1.2 and P-value < 0.05 were considered as 
statistically significant target proteins. Gene ontology 
(GO) enrichment analysis was performed using Metas-
cape. For Pull-down Western blot analysis, the enriched 
proteins were released by heating at 95 °C and separated 
by SDS-PAGE electrophoresis for immunoblotting.

Expression and purification of recombinant proteins
The proteins were expressed and purified as described 
previously with slight modifications [18]. The protein 
sequences of PfSpdsyn with a 29-residue N-terminal 
deletion [19] and PfEGF1-α were obtained from Plas-
moDB database. The genes were cloned into the pET28a 
vector, transfected into Escherichia coli BL21, and cul-
tured in LB medium. IPTG was used to induce the 
expression of the recombinant protein. After purification, 
the recombinant proteins were eluted with gradient elu-
tion buffer. The protein concentration was measured and 
stored at − 80 °C for later use.

Fluorescence labeling of recombinant proteins
Equal amounts of recombinant proteins (20 μg) were 
incubated with different concentrations of Cel-P at room 
temperature [20]. In the competition experiment, excess 
Cel and iodoacetamide (IAA) were added first and then 
Cel-P or IAA-P was added. The remaining steps were the 
same as those described above for in  situ fluorescence 
labeling.

Cellular thermal shift assay
To further investigate the binding ability between Cel 
and target proteins, cellular thermal shift assay coupled 
with Western blot (CESTA-WB) was performed as previ-
ously described [21]. Briefly, recombinant proteins were 
treated with Cel or DMSO at room temperature. Next, 
the proteins were aliquoted into PCR tubes and heated 
in a thermal cycler (Applied Biosystems, Thermo Scien-
tific) at a range of increasing temperatures (from 45 °C to 
61 °C). After high-speed centrifugation at 4 °C, the super-
natant was collected and a Western blot experiment was 
performed.

UV‑visible absorption assay
The UV absorption spectra of Cel were measured at 300-
600 nm using a 96-well plate reader (PerkinElmer, USA) 
[14]. Different concentrations of Cel were diluted and the 
absorbance was measured. For the absorbance of Cel post 
binding to target proteins, Cel and recombinant proteins 
were incubated at room temperature for 1 h, followed by 
the absorbance measurement.
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Bio‑layer interferometry (BLI) assay
The Octet® NTA Biosensor and Octet® Bio-Layer Inter-
ferometry (BLI) platform were used to study the binding 
of Cel to target proteins. First, the recombinant proteins 
were immobilized on the biosensor and then bound to 
gradient concentrations of Cel. The baseline time was set 
to 60s, the molecular association to 90s and the dissocia-
tion to 120 s. Octet Analysis Studio (13.0) was used for 
kinetic analysis.

Molecular docking simulation
The structure of Cel was downloaded from PubChem 
(CID:122724), the protein 3D structure of PfSpdsyn from 
PDB (2PT9) and PfEGF1-α from Alphafold (Q8I0P6). The 
docking simulation was performed by MOE (2019.0102) 
[17]. Cysteine in the protein was selected as a potential 
site and the default method of the software was used for 
docking. After docking, the optimal result was selected as 
the potential binding mode.

Measurement of spermidine level
Spermidine levels were measured using a spermidine 
ELISA kit (CLOUD-CLONE CORP, CEX053Ge). Para-
sites were seeded in a 6-well plate and incubated with 
different concentrations of Cel. Parasites were then col-
lected for the measurement of spermidine according to 
the manufacturer’s instructions.

Newly synthesized protein inhibition assay
The labeling of newly synthesized proteins was per-
formed as previously reported [20, 22]. First, parasites 
were washed with methionine (Met)-free 1640 medium 
and then incubated in Met-free 1640 medium for 30 min-
utes. After incubation, 50 μmol/L Click-iT™ AHA 
(Thermo Fisher Scientific, C10102) and different con-
centrations of Cel were added, and cycloheximide (CHX) 
was used as a control. The parasite was harvested for 
protein extraction and the click reaction was performed 
to conjugate TAMRA-alkyne or biotin-alkyne. The SDS-
PAGE electrophoresis and the pull-down assay steps were 
the same as the described above.

Proteomics analysis
Parasites were treated with DMSO or Cel for 6 h. Infected 
erythrocytes were collected and the proteins were 
extracted. The same amount of protein was taken for 
reduction with dithiothreitol (DTT) and reaction with 
IAA. The proteins were then digested with trypsin over-
night at 37 °C [23]. After digestion, the peptides were 
desalted and spin-drying for LC-MS/MS analysis. Pro-
teins with P-value < 0.05 and fold change ≥1.5 were con-
sidered as differentially expressed proteins. Metascape 
was used for GO enrichment analysis.

RNA‑sequencing analysis
The RNA-sequencing (RNA-seq) analysis was performed 
as previously described [24]. The NEBNext Ultra RNA 
Library Prep Kit for Illumina (NEB, USA) was used to 
construct the sequencing library [20]. After treatment 
with DMSO or Cel, total RNA was extracted from the 
parasites, followed by mRNA purification using poly-T 
oligo-attached magnetic beads. PCR experiments were 
performed and the sequencing results were collected on 
the Illumina platform (Novogene, CN). Three independ-
ent reproducible experiments were carried out for each 
group. P-value < 0.05 and  log2FC (fold change) ≥ 0.5 were 
considered differentially expressed genes and ESeq2 
(V1.10.0) R package was used to analyse the differential 
gene expression.

Results
Antimalarial activity of Celastrol against PbANKA infection 
in mice
First, we evaluated the in  vivo antimalarial effects of 
Celastrol (Cel) in PbANKA-infected mice as shown in 
Fig. 1A [25]. The results showed that there was a signifi-
cant reduction in blood parasitemia in infected mice after 
Cel treatment alone, with a trend similar to that of the 
artesunate-treated group (Fig. 1B). And the trend in the 
group treated with both artesunate and Cel was consist-
ent with that of artesunate alone (Fig. 1B). Similar trends 
were observed in behavioral changes as well as changes in 
apparent body temperature (Fig.1C-D). During malaria 
infection, the two most important immune organs, liver 
and spleen, swell and undergo varying degrees of inflam-
matory damage. Histopathologic evaluation showed that 
both artesunate and Cel treatment significantly reduced 
organ enlargement, decreased inflammatory cell infiltra-
tion, and mitigated tissue damage, but did not restore 
them to a normal state (Fig.  1E-G). Notably, Cel treat-
ment seemed to ameliorate liver injury better, suggesting 
that Cel may have a potential protective effect on the liver 
[26, 27]. The changes in serum levels of alanine transami-
nase (ALT) and aspartate transaminase (AST) after drug 
treatment also suggest that Cel may significantly amelio-
rate malaria-induced liver injury (Fig. 1H-I).

Profiling the protein targets of Celastrol by ABPP
After confirming the antimalarial activity of Cel, we 
investigated its binding targets in P. falciparum using 
a Cel activity probe (Cel-P) based on ABPP technol-
ogy (Fig.  2A) [28]. First, we measured the antimalarial 
activity of the Cel-P against P. falciparum 3D7 and Dd2 
strains in  vitro and compared it with that of Cel. The 
results showed that the probe retained similar parasiti-
cidal activity as Cel in the low uM concentration range 
as shown in Fig. 2B and S1. Cel-P was then used to label 
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the parasite proteins by in situ fluorescence labeling assay 
(Fig.  2C). The results showed that the parasite proteins 
could be labeled by Cel-P in a dose-dependent manner 
(Fig. 2D). More importantly, pre-incubation of the excess 
Cel significantly attenuated the fluorescent labeling, sug-
gesting that Cel and Cel-P target the same proteins in the 
parasite (Fig.  2E). Furthermore, the live imaging results 
also showed that Cel-P could quickly distribute inside the 

parasites and could be outcompeted by excess Cel, which 
was consistent with the fluorescence labeling in the gel 
(Fig. 2F). The promising antimalarial activity and target-
binding specificity of the Cel-P rasies the possibility of its 
further usage to identify antimalarial targets of Cel.

Therefore, Cel-P was used to capture and enrich 
the target proteins based on pull-down experiments 
(Fig.  2C). Subsequently, the enriched proteins were 

Fig. 1 Celastrol shows potential antimalarial effects in vivo in PbANKA infected C57BL/6 mice. A The scheme of animal modeling and drug 
handling. C57BL/6 mice were divided into five groups (Control; model; ATS treatment; Cel treatment; ATS + Cel treatment). B Daily parasitemia 
was monitored by Giemsa staining. C‑D The behavioral observations and body temperature measurements on the first day and last day. E The 
histopathological observations of liver and spleen using H&E staining (scale bar = 50 μm). F‑G The organ index of liver and spleen in each group 
after treatment. H‑I The levels of serum ALT and AST in each group after treatment. All data were presented as mean ± standard error of the mean 
(SEM), ###P < 0.001 vs control; *P < 0.05, **P < 0.01, ***P < 0.001 vs model. ATS, artesunate; Cel, Celastrol

(See figure on next page.)
Fig. 2 Identification of Cel potential antimalarial targets in P. falciparum based on the ABPP strategy. A The structure of Cel and Cel-P. B The 
antimalarial activity of Cel and Cel-P against P. falciparum 3D7 strain. C The workflow of ABPP for the profiling of Cel target proteins. D In situ 
fluorescence labeling of Cel-P in parasite proteins. E In situ competition experiment of Cel-P by Cel. F Confocal imaging showed the distribution 
of Cel-P in parasites with or without excess Cel (scale bar = 1 μm). G Heatmap representation of the target proteins identified by the Cel-P. H Gene 
ontology (GO) enrichment analysis for all potential targets of Cel-P. CBB, Coomassie brilliant blue; RBC, red blood cells; HZ, hemozoin; TAMRA, 
carboxy tetramethyl rhodamine
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Fig. 2 (See legend on previous page.)
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subjected to quantitative proteomic analysis using high-
resolution tandem mass spectrometry (LC-MS/MS) 
coupled with TMT labeling, and a total of 31 potential 
targets were identified based on stringent screening cri-
teria (Fig.  2G, Table. S1). Gene ontology (GO) analysis 
revealed that these potential target proteins were mainly 
associated with the metabolic and biosynthetic processes 
of the parasite (Fig. 2H).

Integrated proteomics and transcriptomics analysis of P. 
falciparum after Celastrol treatment
Next, we investigated the changes at the proteome level 
of P. falciparum after Cel treatment by proteomics analy-
sis. The results showed significant changes in the expres-
sion of 1220 proteins in the whole proteome after Cel 
treatment (Fig. S2), and GO enrichment analysis showed 
that these proteins were mainly involved in various physi-
ological processes such as protein synthesis (Fig. 3A). We 
then examined the changes in protein expression of the 
potential targets identified by Cel-P and found 19 targets 
with significant changes in protein expression (Fig.  3B), 
while the results of GO analysis indicated that these 
proteins are involved in several important physiological 
processes (Fig. 3C). From the significantly enriched bio-
logical processes, we found that biosynthetic processes 
are the most likely processes for Cel targeting. To fur-
ther validate the targeting of Cel in these processes, in 
the following sections, we performed a series of verifica-
tion experiments on two important and representative 
proteins of interest, PfSpdsyn and PfEGF1-α, which have 
been shown to play important roles in parasite growth 
and are considered to be promising drug targets.

We should note that, we also investigated the changes 
at the transcriptome level of P. falciparum after Cel treat-
ment by transcriptomics analysis. The results showed 
that significant regulation occurred at the transcrip-
tome level, with 1310 genes being up-regulated and 1274 
genes being down-regulated (Fig. 3D), involving multiple 
physiological processes (Fig.  3E-F). This further reflects 
that Cel may have potential multi-targeted antimalarial 
properties.

Celastrol inhibits the spermidine synthesis in P. falciparum
Polyamines are essential and ubiquitous for cell prolif-
eration and differentiation. They interact with various 
anionic macromolecules (DNA, RNA, protein, etc.) to 
regulate a variety of physiological activities, such as influ-
encing the DNA, RNA, and protein synthesis and affect-
ing ion channels [29]. Inhibition of polyamine synthesis 
has been suggested as a promising antimalarial approach, 
and enzymes involved in polyamine biosynthesis are 
considered promising drug targets [30]. Das Gupta et al. 

showed that polyamine levels in P. falciparum correlate 
with its growth stage, and that spermidine is the most 
abundant polyamine at all times [31]. In P. falciparum, 
spermidine is synthesized via the transfer of an amino-
propyl moiety to putrescine by spermidine synthase 
(PfSpdsyn, PF3D7_1129000), and since P. falciparum 
lacks polyamine interconversion, the activity of PfSp-
dsyn determines the level of spermidine in P. falciparum 
[32–34].

As shown above, PfSpdsyn was identified as a potential 
antimalarial target of Cel. We expressed and purified the 
recombinant PfSpdsyn protein in vitro and performed a 
series of experiments to validate its interaction with Cel 
[19]. The fluorescence labeling experiments showed that 
Cel-P binds the P. falciparum protein in a dose-depend-
ent manner and can be specifically competed away by 
excess Cel (Fig. 4A-B). Similar results were also observed 
in subsequent live cell immunofluorescence experiments 
as well as in pull-down western blotting experiments 
(Fig.  4C-E). Meanwhile, the cellular thermal shift assay 
coupled with Western blotting (CETSA-WB) experiment 
showed that Cel could significantly increase the thermal 
stability of PfSpdsyn protein compared to the DMSO 
control group (Fig.  4F). In addition, the UV absorp-
tion was significantly attenuated after incubation of Cel 
to PfSpdsyn protein (Fig. S3, Fig.  4)G [14]. In addition, 
the Bio-layer interferometry (BLI) assay also demon-
strated that the interaction of Cel with PfSpdsyn protein 
(Fig. 4H). Previous studies have shown that Cel can form 
a covalent bond to cysteine residues of proteins through 
the Michael addition reaction [35]. As expected, in the 
competitive labeling experiments, Cel significantly atten-
uated the labeling of IAA-alkynyl probe (IAA-P), a com-
monly used cysteine-targeting probe (Fig. 4I). Molecular 
docking simulation identified cysteines 165 and 266 as 
potential binding sites for Cel on PfSpdsyn proteins, 
which was validated by fluorescence labeling experi-
ments on the corresponding single-site and double-site 
mutants (Fig. 4J-K). What’s more, we also measured the 
spermidine levels in parasites after Cel treatment, and it 
can be seen that spermidine levels decreased in a dose-
dependent manner (Fig.  4L). Taken together, the above 
experimental results suggest that Cel may interfere with 
the spermidine production in P. falciparum by binding to 
PfSpdsyn and exert its antimalarial effect.

Celastrol inhibits the de novo protein synthesis in P. 
falciparum
During the asexual intraerythrocytic life cycle, P. falcipa-
rum exhibits extremely high levels of transcription and 
translation, accompanied by massive protein synthesis for 
rapid growth and proliferation [36], which has long been 
a focus of attention in antimalarial drug development and 
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has been extensively studied [37, 38]. P. falciparum elon-
gation factor 1-α (PfEGF1-α, PF3D7_1357000) is a high-
abundance protein primarily involved in the translation 
process, which binds to ribosomes and plays an indis-
pensable role in P. falciparum protein synthesis [36, 39]. 
In addition, PfEGF1-α is also reported to be involved in 
other important physiological processes such as cytoskel-
etal rearrangements and protein degradation [36].

In the present study, PfEGF1-α was also identified as 
a potential target of Cel. We then performed a series of 
experiments to validate that Cel can specifically bind to 
PfEGF1-α by reacting with cysteine residues, similar 
to the experiments performed for the PfSpdsyn protein 
(Fig. 5A-J). We note that, several ribosomal proteins were 
also identified as potential antimalarial targets of Cel 
(Table S1), further predicting that Cel may affect parasite 

Fig. 3 Integrated transcriptomics and proteomics analysis. A GO enrichment analysis for the differential proteins in proteomics after Cel treatment. 
B Venn diagrams showing the overlap of differential proteins in proteomics with the target proteins identified by Cel-P. C GO enrichment analysis 
for the overlapped proteins from (B). D Volcano plot showing the gene expression after Cel treatment. E‑F GO enrichment analysis of the differential 
genes in transcriptomics
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protein synthesis, similar to the finding in a previous 
study of Cel on tumour cells [40]. We then detected the 
changes in de novo protein synthesis in P. falciparum 
after Cel treatment using a non-radioactive L-methionine 
analog AHA based on the ABPP method [20, 22, 41, 42]. 
The results showed that Cel could indeed interfere with 
the protein synthesis of P. falciparum (Fig.  5K). Mean-
while, we also identified and analyzed the proteins whose 
synthesis was inhibited by LC-MS/MS as mentioned 
above. The results showed that the synthesis of 171 
proteins was inhibited by Cel, and further GO analysis 

indicated that these proteins were mainly related to sev-
eral critical physiological processes, such as transmem-
brane transport, carbohydrate transport, and others (Fig. 
S4).

Discussion
Pharmacological treatment is the mainstay of malaria 
control. In recent decades, the widespread use of 
artemisinin-based drugs has greatly slowed the global 
malaria epidemic, but with the gradual emergence 
of resistance to artemisinin and artemisinin-based 

Fig. 4 Validation of Cel binding to PfSpdsyn (PF3D7_1129,000). A Fluorescence labeling of recombinant PfSpdsyn protein with Cel-P 
in a dose-dependent manner. B Competition fluorescence labeling of Cel-P with excess Cel. C‑D Immunofluorescence staining of co-localization 
of Cel-P with PfSpdsyn and quantitative analysis of colocalization. E Validation of the binding of Cel-P to PfSpdsyn using pull-down Western 
blotting. F Validation of the binding of Cel-P to PfSpdsyn using cellular thermal shift assay. G The UV absorbance spectra of Cel after incubation 
with PfSpdsyn. H The measurement of binding affinity of Cel with PfSpdsyn using the Bio-layer interferometry (BLI) assay. I Competition 
fluorescence labeling of IAA-P with Cel and IAA. (J) Docking simulation of Cel binding to Cys165 of PfSpdsyn. K Fluorescence labeling of Cel-P 
on the wild-type (WT), single-site mutants (C165A, C266A), and double-site mutant (C165A/C266A) of PfSpdsyn. L The spermidine level of parasites 
after treatment with different concentrations of Cel. All data were presented as mean ± standard error of the mean (SEM), **P < 0.01, ***P < 0.001
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combination therapies [43, 44]. The antimalarial situa-
tion has become more critical, increasing the need and 
search for new antimalarial drugs [45]. Natural prod-
ucts have always been an important source for antima-
larial drug development and play a pivotal role in the 
antimalarial process. Cel, as one of the most widely 
studied natural bioactive compound, has shown great 
potential in anti-rheumatoid arthritis [46], anti-tumour 

[47] and neuronal protection [48], and has also been 
reported to have favourable in vitro antimalarial activ-
ity, but little has been reported on the mechanism of 
action, which has hindered its applications in malaria 
treatment.

In this work, we systematically evaluated the antima-
larial activity of Cel by establishing animal models and 
in  vitro parasite cultures, identified its targets using 

Fig. 5 Validation of Cel binding to PfEGF1-α (PF3D7_1357000). A‑J Similar validations as performed in Fig. 4(A-J). K The decrease in fluorescence 
of AHA-labeling after the treatment with Cel. CHX (cycloheximide) serves as a positive control for the inhibition of protein synthesis

Fig. 6 The potential antimalarial mechanism of Celastrol
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ABPP technology, and performed a series of validations 
[49]. We found that Cel can exert antimalarial activity 
by binding to PfSpdsyn and PfEGF1-α proteins, thereby 
interfering with the process of spermidine and protein 
synthesis in P. falciparum (Fig.  6). Targeting polyamine 
and protein synthesis has been proposed as an attrac-
tive antimalarial therapeutic strategy, and the associated 
proteins are considered promising drug targets [50, 51]. 
In addition, our analyses suggest that Cel also appears to 
affect other biological processes, but further work may 
be needed to explore these in more depth and compre-
hensively. What’s more, we have showed that Cel also has 
excellent antimalarial activity against artemisinin-resist-
ant strains (Fig. S5) [52], suggesting that using Cel as a 
backbone to develop novel antimalarials may alleviate the 
current artemisinin resistance predicament.

To the best of our knowledge, this is the first report on 
the identification of antimalarial targets of Cel and asso-
ciated mechanism of action studies using the ABPP tech-
nology, which is of great value for the further exploitation 
of Cel. Following this work, we will chemically synthesize 
more Cel-based derivatives and investigate their antima-
larial activities, in the hope of finding new antimalarial 
drugs with excellent pharmacological and physicochemi-
cal properties. We believe that this would be a very useful 
strategy for the development of new antimalarial drugs.

Conclusions
Overall, this work has deepened our understanding of 
Celastrol in antimalarials by investigating its potential 
antimalarial targets and mechanisms of action, while 
opening up the possibility of further developing Celastrol 
as a novel antimalarial drug or adjuvant. More impor-
tantly, this work has also provided a good start and estab-
lished the necessary theoretical basis for the development 
of potential antimalarial drugs with pentacyclic triterpe-
noid structures, as represented by Celastrol. Last but not 
least, our work also provides an impetus to explore other 
natural compounds with potential antimalarial activity.
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