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Abstract 

Chronic rhinosinusitis (CRS) is a pathological condition characterized by persistent inflammation in the upper respira-
tory tract and paranasal sinuses. The epithelium serves as the first line of defense against potential threats and pro-
tects the nasal mucosa. The fundamental mechanical barrier is formed by the cell-cell contact and mucociliary 
clearance (MCC) systems. The physical-mechanical barrier is comprised of many cellular structures, including adhe-
sion junctions and tight junctions (TJs). To this end, different factors, such as the dysfunction of MCC, destruction 
of epithelial barriers, and tissue remodeling, are related to the onset and development of CRS. Recently published 
studies reported the critical role of different microorganisms, such as Staphylococcus aureus and Pseudomonas 
aeruginosa, in the induction of the mentioned factors. Bacteria could result in diminished ciliary stimulation capac-
ity, and enhance the chance of CRS by reducing basal ciliary beat frequency. Additionally, bacterial exoproteins 
have been demonstrated to disrupt the epithelial barrier and induce downregulation of transmembrane proteins 
such as occludin, claudin, and tricellulin. Moreover, bacteria exert an influence on TJ proteins, leading to an increase 
in the permeability of polarized epithelial cells. Noteworthy, it is evident that the activation of TLR2 by staphylococcal 
enterotoxin can potentially undermine the structural integrity of TJs and the epithelial barrier through the induction 
of pro-inflammatory cytokines. The purpose of this article is an attempt to investigate the possible role of the most 
important microorganisms associated with CRS and their pathogenic mechanisms against mucosal surfaces and epi-
thelial barriers in the paranasal sinuses.
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Introduction
Chronic rhinosinusitis (CRS) is a disease that causes 
inflammation in the upper airways and sinuses and lasts 
for at least 12 weeks. Depending on whether nasal polyps 
(NPs) are present, CRS can be classified into two pheno-
types: CRS without NPs (CRSsNP) and CRS with NPs 
(CRSwNP). Type 1 inflammation and type 2 inflamma-
tion characterize CRSsNP and CRSwNP, respectively [1, 
2]. Due to CRS’s great degree of heterogeneity, its patho-
physiology is still unclear. Different factors, such as racial 
and geographical factors, the dysfunction of mucociliary 
clearance (MCC), destruction of epithelial barriers, dis-
rupted immune response, biofilm community of micro-
organisms, and dysbiosis of sinus microbiota, be related 
to the onset and development of CRS [3, 4].

The mentioned factors can stimulate nasal epithelial 
cells to produce epithelial-derived cytokines. Eosino-
philic infiltration and a T-helper 2 (Th2)-based cytokine 
profile were found in nearly 80% of CRSwNP. However, 
the CRSsNP was more strongly connected with catego-
ries 1 and 3 of inflammation, which are characterized by 
elevated levels of TNF-α, IL-6, IL-8, and IL-17 [5]. The 
prevalence of microorganisms like fungi, bacteria, and 
viruses within the nose and paranasal sinuses in CRS 
patients has been widely established, although the precise 
cause of the inflammation associated with this chronic 
illness condition is still unknown [6, 7].

Recently published studies have reported that bacte-
rial infections are linked to both acute and CRS. To this 
end, the most prevalent respiratory infections found in 
patients with acute sinusitis are Staphylococcus aureus, 
Moraxella catarrhalis, and Streptococcus pneumoniae 
[8]. With a higher prevalence of coagulase-negative 
staphylococci (CONS), S. aureus, Gram-negative bacte-
ria, and anaerobic bacteria, CRS has a different microbio-
logical pattern than acute sinusitis [6]. Patients who have 
had prior sinus surgery have also been demonstrated to 
have greater Pseudomonas aeruginosa prevalence rates 
[9, 10]. Collectively, the possibility exists that the coloni-
zation of these bacteria by the nose or paranasal sinuses 
could result in CRS, prolong the illness, or exacerbate a 
noninfectious inflammatory process [6].

So, it is thought that bacteria may contribute directly or 
indirectly to the development or persistence of CRS and 
clinical practice guidelines for its treatment show that 
most medical professionals agree that the presence of 
bacteria is a major factor in the pathogenesis and cause of 
many CRS cases. In actuality, doctors frequently recom-
mend antimicrobial therapy for the treatment of CRS in a 
variety of ways [6, 11].

Therefore, as mentioned, CRS is a multifactorial 
disease, and microorganisms could play a critical role 
in the progression of this disease. In this regard, the 

possible role of the microorganism has been reported 
in previous research. For instance, S. aureus is a com-
mon human bacterium that is often found in the usual 
microbiota of the noses of healthy people. S. aureus 
enterotoxin B (SEB) was linked to CRS and nasal pol-
yps as a risk factor. Chronic inflammation and damage 
to the inside of the nose caused by SEB are the main 
causes of CRS. In this way, an earlier study found that 
S. aureus was present in the noses of 67% of CRSwNP 
patients [12]. This bacterium can colonize the nasal 
mucosa under specific circumstances, which may facili-
tate its invasion into the subepithelial areas [13]. The 
functions of eosinophils and mast cells are improved by 
SEB, and the production of Th2 cytokines is increased. 
In addition, SEB can induce reactive oxygen species 
(ROS) and endoplasmic reticulum stress in the epithe-
lial cells of patients with CRSwNP [14, 15].

P. aeruginosa is an additional prevalent bacterial spe-
cies observed in non-cystic fibrosis CRS patients, and 
its existence is linked to the manifestation of severe and 
persistent CRS [16]. P. aeruginosa infections and the 
biofilm community of this bacterium have been impli-
cated in recalcitrant CRS that contribute to inflamma-
tion [17]. Moreover, there exists a correlation between 
fungal allergens and dysregulation of the immune 
response, malfunction of the epithelial barrier, intensi-
fication of local inflammatory reactions, and CRS [18]. 
One of the most commonly found fungus species in 
nasal discharge is Alternaria alternata. This particu-
lar species has been observed to exhibit strong immu-
nologic activity in nasal epithelial cells, suggesting its 
potential significance in the development of chronic 
CRS. Furthermore, the interplay between this fungal 
organism and the host’s innate and adaptive immune 
responses gives rise to the onset and progression of 
persistent inflammation. The resulting inflammation 
may subsequently initiate CRS and the development 
of nasal polyps [19]. The inhibition of surfactant pro-
tein synthesis or intracellular reserves and the exces-
sive production of mucus could impede the elimination 
of Alternaria from the sinuses and perhaps contribute 
to the colonization and re-infection by airborne fungi 
[20].

Therefore, the interactions between microorganisms 
and the immune system could lead to CRS. Furthermore, 
the destruction of mucosal barriers, epithelial remod-
eling, and impaired mucociliary clearance are other 
possible pathogenic mechanisms of microorganisms in 
CRS. To this end, the present review paper is an attempt 
to investigate the possible role of the most important 
microorganisms associated with CRS and their patho-
genic mechanisms against mucosal surfaces and epithe-
lial barriers in the paranasal sinuses.
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Mucosal barriers and mucociliary clearance activities 
against microorganisms
The sinonasal tract serves as a location where the exter-
nal world interacts with the body. This interaction 
involves the encounter and subsequent removal of for-
eign antigens through mechanisms such as MCC, as well 
as specific and generic immune responses [21]. The nasal 
mucosa is protected by the epithelium, which serves as 
the initial barrier against potential threats. The funda-
mental mechanical barrier is formed by cell-cell contact 
and the MCC system [3].

The MCC system consists of three fundamental func-
tional components: mucin production, cilia activity, and 
the airway surface liquid layer. The primary role of cili-
ated epithelial cells is to facilitate the removal of diverse 
microorganisms and inhaled irritants that become 
entrapped within the airway surface fluids and mucus. 
Several previous investigations have documented a rela-
tionship between CRS and a decline in MCC, with the 
extent of this decline being positively associated with the 
severity of CRS [22].

The nasal mucosa is constantly exposed to a variety 
of microorganisms such as bacteria (in the form of bio-
film and superantigens), viruses, fungi, and non-living 
foreign proteins [23]. It is worth mentioning that indi-
viduals diagnosed with CRS frequently have a localized 
infection within the nasal and paranasal cavities. Vari-
ous microorganisms, including S. aureus, H. influenzae, 
Aspergillus fumigatus, S. pneumoniae, and P. aeruginosa, 
have been seen to secrete diverse toxins that possess the 
ability to efficiently eradicate ciliated epithelial cells [24]. 
Mucociliary dysfunction has been identified as a contrib-
uting element to the pathogenesis of CRS. This dysfunc-
tion compromises the protective capabilities of the nasal 
mucosa, making it more susceptible to bacterial attach-
ment and biofilm formation. These findings highlight the 
significance of mucociliary dysfunction in the pathogen-
esis of CRS [3].

The physical-mechanical barrier is comprised of 
many cellular structures, including adherence junctions, 
gap junctions, tight junctions (TJs), desmosomes, and 
hemidesmosomes. The aforementioned components play 
a crucial role in promoting robust cell-cell adhesion, cre-
ating a highly selective barrier, establishing cellular polar-
ity, and effectively modulating the movement of various 
molecules and ions [25]. TJs are composed of many pro-
teins, including zonula occludens-1 (ZO-1), claudins, 
junctional adhesion molecule 1 (JAM-1), and occludin. 
Adherens junctions are comprised of transmembrane 
proteins, namely nectin and E-cadherin, as well as intra-
cellular proteins α- and β-catenin. Desmosomal attach-
ments are formed through the heterotypic binding of 
desmoglein molecules [26, 27].

When the integrity of the epithelial barrier in the 
sinuses is compromised, there is a significant transfor-
mation in its structure and function. It transitions from 
being a passive physical barrier to becoming an active 
organ with the ability to secrete various bioactive sub-
stances, including cytokines and complement proteins. 
This transformation enables the recruitment and regu-
lation of diverse immune cells [28, 29]. In this regard, 
the sinonasal epithelium is known to have a significant 
impact on both innate and adaptive immunity. Hence, 
the atypical functionality of the epithelium can exert a 
substantial influence on the initiation and progression of 
CRS [3].

In the normal individual, the mucosal immune system 
exhibits a response to stimulation by serving as an initial 
barrier against invading pathogens, thereby mitigating 
the occurrence of excessive tissue damage and inflamma-
tion as observed in CRS [30]. The destruction of the epi-
thelium results in an increase in epithelial permeability. 
The introduction of external irritants can consequently 
stimulate the activation of immune cells, thereby initi-
ating an immunological response [31]. There have been 
two separate but interconnected responses identified in 
the context of microbial pathogens and foreign proteins, 
namely innate and acquired immunity. The respiratory 
epithelium, which constitutes a physical barrier with 
TJs, serves as the initial line of defense and is a signifi-
cant constituent of the innate immune system within the 
nasal cavity. Additionally, enzymes and peptide antibiot-
ics are excreted inside mucus, exerting direct antibacte-
rial action [32].

The subsequent line of defense is comprised of neu-
trophils and macrophages, which engage in the pro-
cess of phagocytosis against microbial invaders. The 
presence of barrier abnormalities and diminished local 
innate immunity can potentially trigger the immuno-
logical and inflammatory reactions observed in CRS [23, 
33]. Recent investigations have delineated three distinct 
endotypes of CRS based on the increased levels of clas-
sical T-cell cytokines in this pathological state. Type 
1 is primarily linked to an elevation in Th1 cytokines, 
specifically TNF-α and IFN-γ. Type 2 is characterized 
by an upregulation of Th2 cytokines, namely IL-4, IL-5, 
and IL-13. Type 3 is associated with the Th17 cytokines. 
Upon exposure to exogenous irritants, nasal epithelial 
cells have been seen to release a diverse array of inflam-
matory cytokines, including but not limited to TNF-α, 
IL-25, thymic stromal lymphopoietin (TSLP), IL-33, and 
IL-6. There is a prevailing consensus that CRSsNP mostly 
encompasses Th1-type inflammation and has elevated 
levels of IFN-γ expression [34].

Epithelial-derived cytokines, namely IL-25, IL-33, and 
TSLP, play a crucial role in promoting the Th2 response 
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during the formation of innate lymphoid cells (ILCs). 
These cytokines also stimulate the production of Th2 
cytokines, including IL-4, IL-5, and IL-13, which in turn 
contribute to the amplification of type 2 inflammation 
[35]. IL-6 is responsible for promoting the differentiation 
of naive T-cells into Th17 cells and facilitating the pro-
duction of IL-17, a type 3 cytokine that plays a crucial 
role in type 3 inflammation. [3]. Epithelial barrier impair-
ments can be caused by the release of pro-inflammatory 
cytokines such as IFN-γ and IL-4. These cytokines can 
break TJs between epithelial cells and thus decrease the 
resistance of the epithelial barrier to the movement of 
substances across it [36].

There is evidence suggesting that neutrophils may have 
a detrimental effect on epithelial barrier function. This 
effect is thought to be mediated by the release of oncosta-
tin M, a cytokine known to alter the integrity of the epi-
thelial barrier [37]. The excessive production of mucus is 
a characteristic feature of CRS. The upregulation of Th2-
mediated pendrin expression could potentially play a role 
in the augmentation of mucus production and the reduc-
tion of mucociliary clearance in patients with CRSwNP 
[38]. Noteworthy, transepithelial electrical resistance 
(TER) serves as an indication that reflects the functional-
ity of the epithelial barrier [39]. Patients diagnosed with 
CRSwNP display a decrease in TER, which may poten-
tially be linked to impairment of the epithelial barrier 
[36].

Finally, in the airway, the presence of impaired epithe-
lial tissue is a significant factor in initiating the process 
of tissue remodeling [40, 41]. Tissue remodeling refers 
to the anomalous repair or restitution of injured tis-
sue in response to inflammation or mechanical injury, 
which can manifest in any organ. Remodeling, a promi-
nent characteristic of CRS, encompasses many layers of 
sinonasal tissues, namely the epithelium, sub-epithelium, 
and underlying bone [41]. Within the context of CRS, 
studies have documented many forms of tissue remod-
eling, such as basement membrane thickening, mucosal 
hypertrophy, angiogenesis, fibrosis, collagen deposition, 
and osteitis [42]. Mucosal remodeling has been observed 
in both CRSwNP and CRSsNP. Additionally, it has been 
noted that eosinophilic CRS is correlated with signifi-
cant eosinophilic infiltration in the nasal mucosa [43, 44]. 
The available evidence indicates a potential correlation 
between eosinophil activation and eosinophilia and CRS 
remodeling and mucosal damage [45].

Furthermore, an in vitro study has discovered that the 
release of eosinophil-derived neurotoxin from eosino-
phils, which are stimulated by IL5, can significantly 
enhance the production of matrix metalloproteinase 9 
by the nasal epithelium. This process has the potential to 
impact the regeneration of the epithelial tissue and the 

degradation of the extracellular matrix (ECM), ultimately 
resulting in nasal remodeling [46]. ECM proteins have 
a crucial role in the preservation of structural support, 
maintenance of physiological balance, and modulation 
of inflammatory processes inside the airway mucosa. The 
expression of periostin, an ECM protein, is upregulated 
by IL-4 and IL-13, leading to its secretion by airway epi-
thelial cells [42, 47].

It is noteworthy that research investigations focusing 
on nasal mucosal biopsies of CRS have revealed that peri-
osteal proteins can induce eosinophilic infiltration and 
facilitate fibrosis, thereby playing a role in the process 
of mucosal remodeling [48]. Transforming growth fac-
tor-beta (TGF-β) is a growth factor with pleiotropic and 
multifunctional properties, capable of stimulating fibro-
blast proliferation, differentiation, and the development 
of fibrotic traits. Furthermore, it can induce the synthe-
sis of tissue inhibitors of metalloproteinase 1 (TIMP-1), 
thereby impeding the enzymatic degradation of ECM 
[49]. According to the available reports, a notable dispar-
ity has been seen between CRSsNP and CRSwNP regard-
ing the levels of TGF-β. It has been found that CRSsNP 
exhibits elevated TGF-β levels, accompanied by the pres-
ence of denser collagen fibers in the ECM. Consequently, 
this molecular milieu contributes to an exaggerated tissue 
healing response and the development of fibrotic tissue. 
In contrast, the presence of TGF-β is lacking in CRSwNP, 
resulting in poor tissue repair. This is evidenced by the 
occurrence of loose connective tissue and the production 
of edema in the significantly inflamed tissues [50].

Nevertheless, the precise pathomechanism responsible 
for tissue remodeling remains unclear and is currently the 
subject of ongoing research efforts. Collectively, as men-
tioned, mucosal barrier disruption, inhibition of muco-
ciliary function, and mucosal remodeling are important 
factors in CRS. To this end, in the next sections, we will 
discuss the possible role of microorganisms in the pro-
duction of the mentioned factors.

P. aeruginosa
Infections caused by P. aeruginosa have a significant 
death rate due to their high antibiotic resistance. This 
bacterium induces significant tissue damage through 
a range of virulence factors, and its ability to produce 
biofilms leads to the development of persistent infec-
tions that are resistant to antibiotics [51]. The findings 
of recent research have demonstrated that individuals 
diagnosed with CRS exhibit a greater abundance of this 
bacterium as compared to people without CRS. The 
observed variation in bacterial characteristics could 
potentially be linked to the progression of diseases or the 
ability to resist routinely employed antibiotics through 
mechanisms of resistance and the production of biofilms 
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[52]. To this end, finding the exact role of P. aeruginosa in 
the initiation or progression of the CRS has been consid-
ered by researchers in recent years.

As mentioned in the previous parts, CRS is a com-
plex condition characterized by a multifactorial etiol-
ogy, which leads to a pronounced inflammatory reaction 
in the affected area and compromised functionality of 
the MCC mechanism. Noteworthy, the functioning of 
cilia plays a crucial role in the defense mechanism of the 
upper airways, where dysfunction is observed in chronic 
conditions [53]. In this concept, Shen et al., for the assess-
ment of sinonasal ciliary function, administered bacteria 
supernatant, including S. aureus, H. influenza, P. aerugi-
nosa, and S. pneumoniae, to the murine primary sinona-
sal cultures that were established in an air-liquid interface 
(ALI). All of the bacteria supernatants decreased basal 
ciliary beat frequency (CBF); however, P. aeruginosa and 
S. pneumoniae caused a remarkable decrease in CBF. 
Furthermore, P. aeruginosa led to a reduction in the 
ciliary stimulation capacity [9]. Therefore, P. aeruginosa 
could enhance the chance of CRS by reducing basal CBF; 
however, the exact role of this bacterium in this process 
is unknown, and further studies are required in the field.

In addition to CBF inhibition, one potential mecha-
nism by which P. aeruginosa may contribute to CRS is 
the disruption of the mucosal barrier via the release of 
secreted compounds that contribute to the inflammatory 
response. Disruption of TJs has been observed in various 
chronic illnesses, such as CRS. In nasal polyp epithelial 
cell cultures, a diminished expression of TJ and adhesion 
junction proteins, including occludin, ZO-1, claudin-1, 
and E-cadherin, has been seen in comparison to healthy 
mucosa [17, 54, 55]. The failure of the nasal barrier has 
the potential to cause an elevation in permeability to 
allergens such as house dust mites. This, in turn, can 
contribute to the development of allergic sensitization 
and subsequent mast cell degranulation. The release of 
cytokines and pro-inflammatory factors, including hista-
mine, INF-γ, and IL-4, in response to infection or inflam-
mation can lead to barrier dysfunction. This dysfunction 
can potentially exacerbate the involvement of P. aerugi-
nosa in asthma or CRS through indirect mechanisms [56, 
57].

In this regard, in a recently published study, the authors 
applied P. aeruginosa exoprotein to the ALI cultures of 
primary human nasal epithelial cells (HNECs-ALI). Dif-
ferent methods, such as immunofluorescence of TJ pro-
teins, the passage of FITC-dextrans, and transepithelial 
electrical resistance (TEER), were used for the evaluation 
of mucosal barrier integrity. The P. aeruginosa exopro-
tein remarkably increased the production of IL-6 and led 
to the disruption and relocalization of the TJ proteins. 
Moreover, the enhanced permeability of FITC-dextrans 

and the decreased TEER provided further evidence of 
barrier rupture. Interestingly, the detrimental impact 
exhibited a reversible nature and was effectively counter-
acted with the application of proteinase K [17].

In line with these results, Kao et al. also reported that 
serine proteases originating from P. aeruginosa and neu-
trophils have adverse impacts on the integrity of the 
mucosal barrier. This leads to heightened permeability, 
which in turn facilitates the possibility of bacterial inva-
sion [53]. In addition to serine proteases, the findings of 
another investigation indicated a significant correlation 
between P. aeruginosa elastase activity and mucosal bar-
rier disruption, as evidenced by increased permeability of 
FITC-dextrans and decreased TEER [58].

This supports the finding by Nomura et  al., who 
reported that the elastase of P. aeruginosa leads to the 
transient disruption of TJ and downregulation of pro-
tease-activated receptor-2 (PAR-2) in human nasal 
epithelial cells. It’s noteworthy to mention that PARs 
have extensive cellular expression inside several bod-
ily structures, including connective tissue, blood vessels, 
leukocytes, epithelium, and numerous airway cells. Fur-
thermore, the activation of PAR-2 has been observed to 
have an impact on the integrity of the airway epithelial 
barrier. The results of this study showed that the elastase 
destroyed the epithelial barrier and reduced the trans-
membrane proteins tricellulin, occludin, and claudin-1 
and − 4. On the other hand, this bacterial enzyme did 
not show a significant effect on the scaffold PDZ-expres-
sion proteins ZO-1 and − 2 and adherence junction pro-
teins β-catenin and E-cadherin. Moreover, P. aeruginosa 
elastase reduced the expression of PAR-2, which also reg-
ulated the expression of the TJ proteins [59].

The disruptive effect of elastase on the mucosal barrier 
has been evidenced by its ability to cause the reorgani-
zation of TJ proteins. Moreover, elastase possesses the 
capacity to impede pro-inflammatory reactions by cleav-
ing thrombin and liberating C-terminal-derived peptides. 
The release from this peptide binds to pathogen-associ-
ated lipopolysaccharide, hence inhibiting cellular activa-
tion and subsequent proinflammatory reactions [59, 60].

The aforementioned virulence pathways potentially 
play a role in the persistent and recalcitrant nature of P. 
aeruginosa infections in CRS. Hence, as previously said, 
the exoproteins of this bacterium, particularly elastase 
and serine protease, have been demonstrated to dis-
rupt the epithelial barrier and induce downregulation 
of transmembrane proteins such as occludin, claudin-1, 
claudin-4, and tricellulin. Moreover, P. aeruginosa exerts 
an influence on TJ proteins, leading to an increase in 
the permeability of polarized epithelial cells. Therefore, 
although further investigation is required to elucidate the 
precise mechanistic impacts of P. aeruginosa exoproteins 
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on the integrity of the epithelial barrier, the exoproteins 
of this bacterium could play a critical role in the patho-
physiology of CRS by significantly disrupting ciliary 
functions and both the cytoskeleton and apical junctional 
complex proteins. Additionally, these exoproteins should 
be considered as potentially important therapeutic tar-
gets for inhibition and management of CRS (Fig. 1).

S. aureus
According to recent investigations, it has been observed 
that nasal colonization of S. aureus was identified in 67% 
of patients diagnosed with CRSwNP. Additionally, it has 
been shown that nearly 50% of nasal tissue homogenates 
obtained from nasal polyps contain specific IgE antibod-
ies against S. aureus enterotoxins [5]. Therefore, previ-
ous studies have brought attention to the significance 
of staphylococcal virulence factors in the development 
of CRSwNP. One of the main pathogenic mechanisms 
associated with S. aureus in CRSwNP is the disrup-
tion of mucosal integrity. In this regard, in this section, 
we will discuss the possible role of S. aureus in CRS via 

epithelial cell integrity disruption and enhancing their 
permeability.

Panchatcharam et  al. reported that S. aureus bio-
film exoproteins are toxic and disrupt the mucosal bar-
rier structure in a time- and dose-dependent manner 
[61]. Another study also reported that S. aureus strain 
13,565-secreted products could damage the airway epi-
thelium by disrupting the TJs between primary HNECs-
ALI [62]. In line with these results, S. aureus strain 13,565 
was also used in another investigation, and the authors 
suppose that S. aureus is responsible for TJ disruption in 
HNEC-ALI cultures as either a protein-macromolecule 
or a combination of secreted factors [63, 64]. Notewor-
thy, S. aureus strain 13,565 which severely compromised 
the TJ structure is known to produce enterotoxin A24 
and hemolysin B [63]. Finally, Murphy et al. investigated 
the impact of the purified S. aureus V8 protease, a 29 kDa 
serine protease, on airway epithelial integrity. The results 
showed that the application of V8 protease to the sinona-
sal cell layer results in a notable impact on the TJ barrier. 
This is characterized by a decrease in the protein ZO-1, 

Fig. 1 Possible pathogenic mechanisms of bacteria in CRS. A bacteria produce exoproteins and play a critical role in the pathophysiology of CRS 
through B severe disruption of ciliary functions and C both the cytoskeleton and apical junctional complex proteins. D Reactive oxygen species 
generated by bacterial toxins have the potential to disrupt the normal functioning of epithelial cells and lead to alterations in their morphology. 
Moreover, E the bacterial toxin could activate TLR2 and lead to the production of inflammatory cytokines, thereby decreasing epithelial integrity. 
F Finally, colonization or exposure by bacteria in the airway could increase tissue remodeling
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while the protein claudin-1 experiences relatively minor 
changes. The paracellular permeability is significantly 
altered, and there is a fragmentation of protein localiza-
tion. Noteworthy, the alterations seen in ZO-1 may be 
attributed to either protein redistribution or degrada-
tion. This phenomenon could be a result of proteolytic 
degradation or an indirect mechanism [55]. Hence, the 
mentioned virulence factors may be associated with 
mucosal barrier dysfunction; however, more confirma-
tory research should be conducted.

Noteworthy, the recently published study investigated 
the role of staphylococcal enterotoxin B (SEB) in the 
pathogenesis of CRS. To this end, in their study, Martens 
et al. utilized SEB to treat the nasal polyp epithelial cells 
of patients with CRSwNP. The findings of their investiga-
tion revealed that SEB administration led to an increase 
in FD4 permeability and a decrease in TEER, with the 
effects being dependent on the dosage of SEB. In gen-
eral, the presence of SEB leads to the disruption of the 
integrity of epithelial cells, as well as the inhibition of the 
expression of occludin and ZO-1 proteins. Additionally, 
the activation of TLR2 by SEB resulted in the synthe-
sis of IL-6 and IL-8. The application of these cytokines 
to an air-liquid interface culture resulted in a reduction 
in epithelial integrity. Significantly, the prevention of 
SEB-induced barrier disruption was shown through the 
reduction of TLR2 signaling. The outcomes of the animal 
model study further validate these results. To this end, 
the researchers administered 50 µl of SEB (Endonasal) to 
the nasal cavity of the control mice and afterward noticed 
that SEB had a detrimental effect on the integrity of the 
barrier function. Additionally, the expression of occludin 
and ZO-1 mRNA was shown to be reduced. However, the 
aforementioned parameters exhibited no changes in mice 
lacking the TLR2 gene [62].

Additionally, the interaction of SEB and the endoplas-
mic reticulum (ER) stress response was also considered a 
possible mechanism of CRS. Disturbances in the mainte-
nance of ER homeostasis, such as increased protein syn-
thesis, impaired ER redox balance, and the accumulation 
of misfolded proteins, have the potential to induce the 
ER stress response. In addition, it should be noted that 
inflammation plays a significant role in the generation 
of ROS, the induction of ER stress, and the progression 
of nasal polyposis [65]. In this concept, the findings of a 
study indicated that membrane-derived vesicles have the 
potential to transport SEB into the cytoplasm of epithe-
lial cells, potentially leading to the activation of the ER 
stress response mediated by SEB [66]. SEB is recognized 
as a crucial mediator of inflammation in human nasal 
epithelial cells. As previously stated, a correlation exists 
between inflammation and the ER stress response, which 
leads to either tissue healing or the regulation of tissue 

damage. Nevertheless, the ultimate effect of inflamma-
tion generated by ER stress can be either deleterious or 
protective [67, 68].

Hence, the authors postulated that the induction of 
ER stress by SEB could potentially be associated with 
the advancement of nasal polyposis. Furthermore, it has 
been observed that SEB stimulates the generation of 
ROS in both eosinophilic and non-eosinophilic polyps, 
in contrast to the unaffected healthy mucosa. The pre-
sent discovery indicates that ROS generated by SEB could 
potentially play a role in ER stress responses [66]. Nota-
bly, certain allergens and environmental pollutants can 
induce the ER stress response and the generation of ROS, 
which can ultimately lead to mitochondrial dysfunction 
in airway epithelial cells [69].

Noteworthy, ROS are molecular entities that possess 
the ability to exist autonomously, characterized by the 
presence of at least one oxygen atom and one or more 
unpaired electrons. ROS were initially identified as del-
eterious byproducts generated during the process of 
aerobic metabolism. Under normal physiological circum-
stances, minimal amounts of ROS are generated during 
cellular activities, such as aerobic respiration or inflam-
matory responses, primarily within hepatocytes and 
macrophages. ROS serve as key signaling molecules and 
are also involved in muscular contractions, the regula-
tion of vascular tone, as well as the determination of bac-
tericidal and bacteriostatic activity. The elevation in the 
generation of free radicals can be attributed to excessive 
exposure to ultraviolet (UV) radiation, prolonged periods 
of stress, rigorous physical activity, inadequate dietary 
habits, and the consumption of stimulant substances. 
Under normal physiological circumstances, there exists a 
state of equilibrium wherein the production and elimina-
tion of free radicals within the human body are balanced 
[70, 71].

Mitochondrial failure and increased levels of ROS have 
been documented in a diverse range of allergy condi-
tions, including atopy, asthma, allergic rhinitis, and tissue 
damage observed in asthma. This includes detrimental 
effects such as epithelial cell impairment, shedding of 
cells, and heightened airway hyperresponsiveness [72]. 
The presence of environmental contaminants and aller-
gens has been observed to result in mitochondrial dys-
function in airway epithelial cells through the stimulation 
of ROS generation and the ER stress response. Mitochon-
drial reactive oxygen species (mtROS) are generated as 
a consequence of oxidative phosphorylation occurring 
inside the mitochondrial electron transport chain. Mito-
chondria has the capacity to regulate ROS through the 
action of manganese-dependent superoxide dismutase 
(Mn-SOD), an enzyme that acts as a scavenger of mito-
chondrial ROS (mtROS). Nevertheless, the functionality 



Page 8 of 14Chegini et al. Cell Communication and Signaling          (2023) 21:306 

of Mn-SOD can be impeded by a range of conditions, 
such as diverse infections and the inhalation of cigarette 
smoke, resulting in the generation of ROS [15, 72, 73]. 
Collectively, the process of oxidative phosphorylation 
within the electron transport chain of mitochondria leads 
to the generation of mtROS. The regulation of mtROS is 
carried out by mitochondria through the utilization of 
Mn-SOD. However, the activity of Mn-SOD is reduced 
and the formation of ROS is increased by cigarette smoke 
and exogenous infections [74, 75].

In this respect, Yoon et  al. observed an elevation in 
mtROS levels in a human nasal epithelial cell line fol-
lowing exposure to SEB, which was found to be associ-
ated with the development of nasal polyps [76]. Actually, 
mtROS have the potential to modulate both the structure 
and function of mitochondria, leading to the disrup-
tion of normal cellular processes and the development 
of pathological conditions [77]. Collectively, it is evi-
dent that the activation of TLR2 by SEB can potentially 
undermine the structural integrity of TJs and the epithe-
lial barrier through the induction of pro-inflammatory 
cytokines. This event leads to the loss of epithelial cell 
integrity and increases their permeability. In this context, 
the potential therapeutic strategy of targeting the TLR2 
signaling pathway presents itself as a promising avenue 
for mitigating the pathophysiological effects of SEB on 
inflammation in CRSwNP.

Additionally, the administration of SEB has been seen 
to stimulate the production of ROS and trigger ER stress-
induced inflammation. These processes have the poten-
tial to disrupt the normal functioning of epithelial cells 
and lead to alterations in their morphology. However, 
additional animal and clinical investigations are required 
to precisely ascertain these mechanisms. Hence, the 
exoproteins produced by S. aureus have the potential 
to induce dysfunction in the sinonasal epithelium’s bar-
rier, disrupt mucus secretion thereby compromising the 
innate barrier, enhance exposure to antigens, and com-
mence infection in the subepithelial region. Exoproteins 
are responsible for the manifestation of staphylococcal 
virulence and the initiation of inflammation. It should be 
noted that this phenomenon is not limited to the impact 
of a solitary toxin. In this context, it is postulated that a 
collection of proteins, including enterotoxins, hemo-
lysins, and proteases, may be involved in the observed 
inflammation. However, it is important to note that only 
a subset of these proteins is likely to be responsible for 
the actual breakdown of the barrier [61].

S. aureus superantigens, specifically SEA and SEB, can 
enhance chronic inflammation in CRSwNP by stimu-
lating a significant population of T cells. The activation 
of TLR2 by SEB leads to the production of pro-inflam-
matory cytokines. Additionally, SEB stimulates the 

generation of ROS and inflammation caused by ER stress. 
These processes have the potential to disturb the integ-
rity of epithelial cells and increase their permeability [5].

Additionally, lipoteichoic acid (LTA) is a major compo-
nent of the Gram-positive cell wall, which is composed 
of polymers consisting of repeated phosphodiester-linked 
polyols located in the outer plasma membrane [78]. The 
adhesion molecule LTA functions by binding to both 
TLR2 and the CD14 receptor, leading to the subsequent 
release of proinflammatory cytokines, reactive nitrogen, 
and oxygen species, as well as antimicrobial peptides 
[79]. To this end, the activation of TLR2 by LTA in lung 
endothelial cells is responsible for the induction of an 
elevated permeability of the cellular barrier. This effect is 
achieved by the production of ROS and reactive nitrogen 
species [64].

Finally, the soluble secreted protein known as alpha-
hemolysin (Hla) engages in interactions with eukaryotic 
cell membranes. The monomeric form of Hla exhibits 
binding affinity towards the plasma membrane, leading 
to the formation of a heptameric transmembrane pore. 
There have been reports indicating a decrease in ciliary 
activity and the presence of ultrastructural alterations in 
nasal airway cells in vitro [64, 80]. Collectively, different 
exoproteins of S. aureus could lead to disruption of the 
mucosal barriers and increase the chance of CRS. Note-
worthy, the interactions of S. aureus with mucosal barri-
ers were also shown in an animal model [81]; however, 
data in this field is not complete and additional studies 
are required to definitively exclude any contribution to 
barrier dysfunction.

In the end, it is noteworthy to mention that S. aureus, 
in addition to disrupting barrier integrity, could lead to 
epithelial-mediated remodeling of allergic airways. Tissue 
remodeling occurs in the airway tissue of individuals with 
respiratory diseases and is characterized by augmented 
collagen deposition, hyperplasia of smooth muscle and 
submucosal glands, as well as fibrosis [82]. One of the sig-
nificant discoveries in the advanced remodeling tissue of 
asthma patients is the presence of an imbalance between 
matrix metalloproteinases (MMPs) and tissue inhibitors 
of metalloproteinases (TIMPs) at the molecular level.

To this end, Homma et  al. conducted an experiment 
including the stimulation of normal human bronchial 
epithelial (NHBE) cells with transforming growth factor 
(TGF)-α and S. aureus. The bacteria elicited the produc-
tion of both mRNA and protein for TGF-α and MMP 1 
from NHBE cells through a TLR2-dependent pathway 
[83]. In summary, S. aureus can activate TLR2, result-
ing in the significant induction of MMP-1 expression 
in primary airway epithelial cells. Therefore, the pres-
ence or colonization of this bacterium in the respiratory 
tract may contribute to tissue remodeling by inducing 
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the production of MMP-1 through a TGF-α-dependent 
mechanism. This process could potentially contribute to 
the development of airway illnesses, such as asthma and 
CRS. Nonetheless, we could not find confirmatory data 
on this subject; therefore, more confirmatory studies are 
needed.

It should be noted that, in addition to P. aeruginosa and 
S. aureus, other microorganisms such as Streptococcus 
pneumoniae, Alternaria alternata, rhinoviruses, Asper-
gillus, and Haemophilus influenza could also disrupt the 
mucosal barrier and increase the chance of CRS. The data 
about the mentioned microorganism is limited; however, 
the funded article is presented in Table 1.

Therapeutic approaches
As mentioned, the combined effect of P. aeruginosa exo-
protein on enhancing mucosal permeability and degrad-
ing innate immune defense mechanisms may result in a 
persistent, yet inadequate, immune response. This inad-
equate response is a contributing factor to the devel-
opment of severe inflammation and the production of 
polyps in individuals with P. aeruginosa-associated CRS. 
In this concept, understanding the interactions of micro-
organisms with mucosal surfaces and epithelial barriers 
in the paranasal sinuses can facilitate developing preven-
tive and treatment approaches against CRSwNP. To this 
end, recently published studies used different approaches 
for inhibiting the destructive effects of microorganisms 
on mucosal surfaces and epithelial barriers in the para-
nasal sinuses.

Lim et  al. used ciprofloxacin and azithromycin sinus 
stent (CASS) on human sinonasal epithelial cells 
(HSNECs) that had been stimulated by LPS from P. aer-
uginosa. Noteworthy, the CASS was specifically engi-
neered to facilitate the controlled release of azithromycin 
and ciprofloxacin. This release is achieved through the 
utilization of two separate layers inside the system: an 
inner layer composed of hydrophilic ciprofloxacin and 
an outer layer composed of hydrophobic azithromycin. 
The administration of CASS therapy resulted in a nota-
ble reduction in the inflammatory response (IL-8) caused 
by LPS in HSNECs. This reduction was observed without 
any harmful effects on the cells and maintained the integ-
rity and functionality of the epithelial layer. Actually, the 
administration of CASS did not result in any significant 
alterations in TEER, CBF, or paracellular permeability. 
These findings suggest that cellular integrity and func-
tionality were preserved following treatment with CASS. 
Hence, the authors propose that the utilization of an 
antibiotic-eluting sinus stent for the continuous release 
of ciprofloxacin and azithromycin is a promising therapy 
approach with significant potential for enhancing clinical 
outcomes in CRS [92].

Additionally, the results of another study also indicated 
that Rhinosectan®, a medical device containing xylo-
glucan, contributed to the preservation of TJ, as dem-
onstrated by an increase in TEER values across time. 
Noteworthy, Rhinosectan® did not alter the paracellular 
flux, even after treatment with LPS from P. aeruginosa. 
The findings of this study suggest that xyloglucan has 
the ability to inhibit P. aeruginosa-induced changes in 
TJ permeability [93]. To this end, the authors postulated 
that the existence of xyloglucan is believed to prevent 
the interaction between epithelial cells and aeroaller-
gens, such as pollen, as well as the released cytokines, 
hence mitigating the allergic reaction. Furthermore, it is 
believed that preventing the interaction between bacte-
rial LPS and the monolayers can reduce the inflammation 
of nasal epithelial cells caused by LPS. Consequently, this 
can mitigate the inflammatory response triggered by LPS 
derived from Gram-negative bacteria [93, 94].

Therefore, as mentioned, after recognizing bacterial 
interactions with mucosal surfaces and epithelial barriers 
in the paranasal sinuses, we can use a protective physi-
cal barrier on nasal epithelial cells and different agents 
to interfere with microbial invasion of the mucosal bar-
riers. However, data in this field is very limited, and fur-
ther studies are needed. In the end, it is noteworthy to 
mention that the mitigation of chronic inflammation in 
the sinonasal mucosa is a significant obstacle in the man-
agement of individuals diagnosed with CRS. The control 
of inflammation presents a potential avenue for the re-
epithelialization of the lining of the sinonasal cavity as 
well as the restoration of functional cilia activity. In this 
concept, the presence of microbial-induced pro-inflam-
matory cytokines in the sinonasal mucosa is a significant 
contributing element to the degradation of mucosal bar-
riers, hence increasing the susceptibility of individuals to 
CRSwNP. Anti-inflammatory agents such as bee venom, 
chitosan-dextran gel, prostaglandin E2, dexamethasone, 
and calcium channel blockers have been shown to inhibit 
microbial-induced pro-inflammatory cytokines. There-
fore, future studies can consider these agents for inhibi-
tion of microbial destructive effects on mucosal surfaces 
and epithelial barriers in the paranasal sinuses [5, 95].

Conclusion
The objective of this study was to examine the patho-
genic mechanisms of common microorganisms in CRS 
and their involvement in the degradation of mucosal 
barriers, remodeling of epithelial tissue, and impairment 
of MCC. Bacteria, fungi, and viruses can exert a signifi-
cant influence on the pathogenesis and advancement of 
CRS through the modulation of both innate and adaptive 
immune reactions. The role of epithelial disorder is cru-
cial in the development or cause of CRS. The disruption 
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of the epithelium barrier and failure of MCC are the pri-
mary mechanisms underlying the pathogenesis of CRS. 
The analysis of research findings has revealed that micro-
bial-produced substances disrupt an essential element of 
mucociliary clearance. However, given the significance 
of various microorganisms in the etiology and exacerba-
tion of this disease, as well as its profound implications 
for individuals’ well-being, further extensive investigation 
is imperative to substantiate the involvement of micro-
organisms in the destruction and disruption of epithelial 
barriers within the paranasal sinuses.
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