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Abstract

Background: Heterotrimeric GTP-binding proteins (G-proteins) play an important role in mediating signal transduction
generated by neurotransmitters or hormones. Go, a member of the Gi/Go subfamily, is the most abundant G-protein
found in the brain. Recently, the alpha subunit of Go (Gαo) was characterized as an inducer of neuronal differentiation.
However, its underlying molecular mechanisms have remained unclear to date, since the downstream effectors of Gαo
are ambiguous.

Results: A neurally differentiated embryonal carcinoma-derived protein (Necdin) was isolated as an interacting partner
for Gαo from a mouse brain cDNA library using yeast two-hybrid screening. Interactions between the proteins were
confirmed with several affinity binding assays, both in vitro and in vivo. Necdin interacted directly and preferentially
with activated Gαo, compared to wild-type protein. Interestingly, Gαo did not interact with Gαi, despite high sequence
homology between the two proteins. We subsequently analyzed whether Gαo modulates the cellular activities of
Necdin. Notably, expression of Gαo significantly augmented Necdin-mediated cellular responses, such as proliferation
and differentiation. Moreover, activation of type 1 cannabinoid receptor (CB1R), a Gi/oα-coupled receptor, augmented
cell growth suppression, which was mediated by Gαo and Necdin in U87MG cells containing CB1R, Gαo, and Necdin
as normal components.

Conclusions: These results collectively suggest that Necdin is a candidate downstream effector for Gαo. Our findings
provide novel insights into the cellular roles of Gαo and its coupled receptor.
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Background
Heterotrimeric GTP-binding proteins (G-proteins) medi-
ate signaling from G protein-coupled receptors (GPCRs)
to intracellular downstream effectors [1]. Binding of
agonists to GPCR stimulates G-protein activation by
inducing guanine nucleotide exchange from GDP to
GTP. This facilitates dissociation of the alpha subunit
(Gα) from beta/gamma subunits (Gβγ) of G-protein.
Dissociated G-protein subunits, in turn, modulate activa-
tion of their downstream effectors.
To date, 21 Gα subunits encoded by 16 genes have

been identified [2]. Gαo has been classified as a member
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of the Gi/o family, owing to its sequence homology with
Gαi, and is the most abundant Gα protein in brain tissue.
Overexpression of Gαo promotes neuronal differentiation
in various cell types, including PC12, N1E115, and Neuro2a
[3-5]. Previously, we demonstrated that Gαo increases the
number of newly forming neurites in an F11 neuroblastoma
cell line [6]. Gαo additionally induces activation of Ras-like
protein in all tissues (Rit), which triggers Erk-mediated
neuronal differentiation in neuro2A cells [7]. These find-
ings collectively indicate that Gαo acts as an inducer of
neuronal differentiation in neurogenic cells. However,
the downstream effectors for Gαo and related signaling
pathways have not been fully elucidated.
Cannabinoids, the major components of Cannabis sativa

Linnaeus (marijuana), have recently received considerable
attention as potential therapeutic agents, owing to their
various pharmacological actions, including pain control,
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tumor regression, neurogenesis, neuroprotection, and anti-
inflammatory effects [8-12]. Two types of cannabinoid
receptors, designated Gi/o-coupled receptors, have been
identified: (1) type I cannabinoid receptor (CB1R) cloned in
1990 [13], predominantly expressed in the brain [14], and
(2) type II cannabinoid receptor (CB2R) cloned in 1993
[15], mainly expressed in cells of the immune system [16].
Neurally differentiated embryonal carcinoma-derived

protein (Necdin) was originally isolated from P19 embry-
onic carcinoma cells [17]. Necdin, primarily identified
as a functional analog of retinoblastoma protein (Rb),
acts as a cell growth suppressor [18]. Additionally, Necdin
is reported to induce differentiation in various cell
types, including neuronal, muscular, and adipose cells
[17,19-21]. Necdin interacts with several Rb-interacting
proteins, including SV40 large T antigen and adenovirus
E1A, and binds directly to the transcription factor, E2F1, to
inhibit its function [22]. Similar to Rb, which induces neur-
onal differentiation by inhibiting E2F1-associated cell cycle
progression, ectopic expression of Necdin triggers neuronal
differentiation in N1E-115 neuroblastoma cells [23].
In this study, we performed yeast two-hybrid screening

to identify downstream effectors for Gαo using a consti-
tutively active form of Gαo as bait from a mouse brain
cDNA library. Consequently, Necdin was identified as a
Gαo-interacting protein. Interactions between Gαo and
Necdin, both in vitro and in vivo, were further confirmed
with several affinity binding assays. Furthermore, activation
of Gαo enhanced Necdin activity. Our findings collectively
indicate that Necdin is a candidate downstream effector
for Gαo.

Results
Interactions of Gαo with Necdin in vitro and in vivo
We performed yeast two-hybrid screening to identify
Gαo-interacting partners from a mouse brain cDNA
library. Necdin protein was isolated using the constitutively
active mutant of Gαo as bait, and interactions confirmed
with several affinity binding assays. Beads charged with
bacterially expressed GST or GST-Gαo proteins were
incubated with soluble proteins obtained by detergent
extraction of 293T cells transfected with FLAG-tagged
Necdin (FLAG-Necdin), and the reaction mixtures probed
with antibodies against FLAG. GST-Gαo specifically
interacted with FLAG-Necdin (Figure 1A). To determine
whether these interactions also occur in the mammalian
cellular context, 293T cells were transfected with plasmids
encoding wild type of Gαo (GαoWT) and FLAG-Necdin,
and the lysates immunoprecipitated and immunoblotted
with the indicated antibodies. Consistently, Necdin was
identified as an interacting partner of Gαo in mammalian
cells (Figure 1B). To investigate whether the two proteins
co-localized in 293T cells, cells were transfected with plas-
mids encoding GoαWT and FLAG-Necdin, and stained
with the corresponding antibodies. Confocal microscopy
images obtained from the immunofluorescence study
indicated co-localization of the two proteins in the cell
membrane (Figure 1C). Immunoprecipitation experiments
were performed using newborn rat brain extracts to
investigate endogenous interactions between the two
proteins. Immunocomplexes that precipitated with anti-
bodies against Gαo were analyzed using anti-Necdin
antibodies. Necdin proteins were detected in immuno-
precipitates of Gαo (Figure 1D). Finally, we performed
immunohistochemistry using mouse E15.5 brain to test
their expression and co-localization in vivo. As shown
in Figure 1E, Gαo was mainly expressed in cell mem-
brane and cell process of subplate neuron. Necdin was
also expressed in perinuclear region of both cortical
plate and subplate neurons. Gαo and Necdin were co-
localized in cell membrane of subplate neuron. These
results clearly imply that Gαo specifically interacts
with Necdin in vitro as well as in vivo.

Characteristics of Gαo interactions with Necdin
To determine whether Necdin functions as a downstream
effector for Gαo, we incubated with purified His-Gαo
and/or glutathione-S-transferase (GST)-tagged Necdin
(GST-Necdin) proteins in the presence or absence of
AlF4

−, an activator of Gα protein. After glutathione-
Sepharose beads were added to the reactions, beads were
analyzed with antibodies against Gαo and Necdin. Necdin
bound directly to Gαo in the presence of AlF4

− (Figure 2A).
Next, we performed a co-immunoprecipitation assay using
lysates of 293T cells expressing plasmids encoding the
wild-type and constitutively active form of Gαo, together
with FLAG-Necdin. Immunocomplexes precipitating with
anti-Gαo antibodies were analyzed with immunoblot ana-
lysis using antibodies against FLAG and Gαo. Notably, the
constitutively active form of Gαo showed higher affinity
for Necdin than the wild-type protein (Figure 2B). In view
of these results showing that Necdin binds directly and
preferentially to the activated form of Gαo, we propose
that Necdin is a candidate downstream effector for Gαo.
Since Gαo displays a high degree of sequence homology

with Gαi, we examined whether Gαi also interacts with
Necdin using lysates of 293T cells co-expressing either
FLAG-Gαo or FLAG-Gαi together with hemagglutinin
(HA)-tagged-Necdin (HA-Necdin). Cell lysates were
incubated with antibodies against Necdin, and the immu-
nocomplexes analyzed with immunoblot analysis using
the indicated antibodies (Figure 3B). Interestingly, how-
ever, Gαi did not interact with Necdin, unlike Gαo. Next,
we employed a chimeric construct [24] of Gαo and Gαi
to investigate the Necdin-interacting domain in Gαo
(Figure 3A). Lysates of 293T cells co-expressing plasmids
encoding FLAG-Gα chimeric proteins and HA-Necdin
were subjected to immunoprecipitation analysis with
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Figure 1 Gαo interacts with Necdin in vitro and in vivo. (A) Beads charged with bacterially expressed GST or GST-Gαo were incubated with 293T
cell extracts expressing 10 μg of plasmid encoding FLAG-Necdin. After extensive washing with PBTX buffer, bound proteins were immunoblotted
with antibodies against FLAG. Input was loaded with 10% of 293T cell extracts used for the GST pulldown assay, and Coomassie blue staining
used to estimate the levels of GST and GST-Gαo proteins. The numbers beside blot indicate size marker (kDa). (B) Lysates (500 μg) of 293T cells
mock-transfected and expressing GαoWT (3 μg) and FLAG-Necdin (3 μg) plasmids were incubated with antibodies against Gαo or FLAG, as indicated,
and the immunoprecipitates immunoblotted with anti-FLAG and Gαo antibodies. Input was loaded with 10% of 293T cell extracts used for the
immunoprecipitation assay. (C) 293T cells co-transfected with the plasmid encoding GαoWT (0.1 μg) and FLAG-Necdin (0.25 μg) were subjected
to immunofluorescence analysis using anti-Gαo and Alexa Fluor 488-conjugated secondary (green fluorescence) antibodies and anti-FLAG and Alexa
Fluor 568-conjugated secondary antibodies (red fluorescence). Co-localization of the two types of fluorescence is indicated in yellow in the merged
image. The DAPI image represents the cell nucleus. Scale bar = 20 μm (D) Newborn rat brain extracts (500 μg) were immunoprecipitated with 1 μg of
pre-immune serum (PI) and anti-Gαo antibodies. Immunocomplexes were analyzed by immunoblot analysis using antibodies against Necdin and Gαo.
Input was loaded with 10% of brain extracts used for the immunoprecipitation assay. (E) Mouse brain (E15.5) section was subjected to immunofluorescence
analysis using anti-Gαo and Alexa Fluor 488-conjugated secondary (green fluorescence) antibodies and anti-Necdin and Alexa Fluor 594-conjugated
secondary antibodies (red fluorescence). Co-localization of the two types of fluorescence is indicated in yellow in the merged image. The Hoechst
image represents the cell nucleus. Scale bar = 100 μm/100 μm/20 μm.
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antibodies against Necdin. A chimeric protein, Gαi/o,
containing Gαi [1–212] and Gαo [214–354], success-
fully bound to Necdin, but not Gαo/i containing Gαo
[1–213] and Gαi [213–354] (Figure 3B). Our results
suggest that Gαo interacts with Necdin via part of the
C-terminal region required for GTPase activity.

Effect of Gαo on the cellular activity of Necdin
Necdin is generally expressed in post-mitotic cells, and
implicated in various cellular responses, such as cell
growth suppression and neuronal differentiation [25-27].
To determine whether Gαo augments the growth sup-
pressor activity of Necdin, we performed a BrdU incorpor-
ation assay in 293T cells expressing various types of Gα
and/or FLAG-Necdin plasmids, indicated. To identify
transfected cells, we co-transfected with the green fluores-
cence protein (GFP) expression plasmid, pEGFP. Cells
were observed using fluorescence microscopy, and the
proportion of BrdU-positive S-phase cells among GFP-
positive cells determined (Additional file 1: Figure S1 and
Figure 4). Gα alone (regardless of the types) did not affect
the BrdU-positive cell population, compared to control
levels. As expected, expression of Necdin promoted a
significant decrease in the proportion of BrdU-positive
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Figure 2 Necdin interacts directly and preferentially with activated
Gαo. (A) His-Gαo and GST-Necdin fusion proteins were purified from
bacterial lysates. His-Gαo (600 nM) was incubated with 30 μM GDP andr
AlF4
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30°C. Purified GST-Necdin (200 nM) was added to the reaction mixture
and incubated for an additional 20 min at 20°C. Glutathione-sepharose 4B
beads were added to the final reaction mixtures, and the beads analyzed
by immunoblot analysis using antibodies against Gαo and Necdin. Input
was loaded with 10% of His-Gαo used for the assay. The numbers beside
blot indicate size marker (kDa). (B) Lysates of 293T cells expressing
plasmids either GαoWT (3 μg) or GαoQ205L (3 μg) together with
FLAG-Necdin (10 μg) were incubated with anti-Gαo antibodies.
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cells. Importantly, cell growth suppression induced by
Necdin was augmented by the active form of Gαo, but
not Gαo/i.
Next, we examined whether Gαo affects Necdin-

mediated neuronal differentiation. Neuro2a cells express-
ing the indicated types of Gαo and/or FLAG-Necdin were
differentiated via serum starvation. To identify transfected
cells, we co-transfected with GFP expression plasmid.
At 30 h after serum starvation, cells were observed
under a fluorescence microscope, and the percentage of
neurite-bearing cells among the GFP-positive population
counted (Additional file 2: Figure S2 and Figure 5A).
Expression of wild-type and active forms of Gαo promoted
neurite outgrowth, whereas Gαo/i did not induce neurite
outgrowth. As expected, Necdin promoted neuronal differ-
entiation in the absence of Gαo. Moreover, this effect was
synergistically increased by Gαo, but not Gαo/i expression.
Necdin functions by interacting directly with and antag-

onizing the function of E2F1, a major cell cycle regulatory
protein [22,23]. To determine whether Gαo promotes
Necdin::E2F1 binding in Neuro2a, we performed an
immunoprecipitation assay using lysates of cells express-
ing plasmid encoding epitope-tagged Necdin, E2F1 and
the indicated types of Gαo (Figure 5B). Immunocomplexes
precipitated with antibodies against FLAG or Necdin
were analyzed via immunoblot analysis. Interestingly,
interactions between Necdin and E2F1 were significantly
increased in the presence of Gαo, but not Gαo/i. Next, we
investigated whether Gαo enhances the transcription
activity of E2F1. Neuro2a cells were transfected with
plasmids encoding FLAG-Necdin and different types of
Gαo, together with E2F1 and E2F4B-luciferase reporter
gene, which contains the E2F1 binding site upstream of
the luciferase gene. Luciferase reporter gene activity
was increased in the presence of E2F1, and expression
of FLAG-Necdin led to a significant decrease in the
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transcription activity of E2F1, which was synergistically
amplified upon co-expression of constitutively activated
mutant form of Gαo (GαoQ205L) (Additional file 3:
Figure S3 and Figure 5C). However, Gαo/i did not alter
the effect of Necdin. Our data clearly indicate that Gαo
acts as an enhancer of Necdin activity, supporting the
theory that Necdin is a candidate downstream effector
for Gαo.

Effect of CB1R activation on growth suppression in
U87MG cells
We further investigated the effects of Gαo-Necdin-E2F1
signaling on growth suppression in U87MG cells endogen-
ously expressing Gαo, Necdin, and E2F1. CB1R was add-
itionally expressed as a normal component in cells, and its
activation induced the Gi/Go protein-mediated signaling
pathway [28]. We examined whether cannabinoid receptor
activation increases cell growth suppression and whether
this effect is mediated by Gαo-Necdin-E2F1 signaling.
We investigated the population of S-phase progression
cells using a BrdU incorporation assay. Notably, the
number of BrdU-positive cells was decreased in the pres-
ence of Hu210. This marked repression was recovered
upon pretreatment with PTX, Gi/oα inhibitor (Figure 6A),
indicative of Gi/Go protein mediation. Using immunopre-
cipitation analysis, we additionally examined whether
Win 55,212-2, CB1R agonist, affects interactions between
Necdin and E2F1, and whether these interactions are
blocked by PTX pretreatment. We used Win 55,212-2
instead of Hu210 to activate CB1R. In the presence of
Win 55,212-2, we observed Necdin binding to E2F1,
which was completely inhibited upon pretreatment with
PTX (Figure 6B). The effect of the cannabinoid agonist
on Necdin-mediated transcriptional activity of E2F1
was investigated in U87MG cells transfected with the
E2F4B-luciferase reporter gene. Treatment with Hu210
induced a dose-dependent reduction in luciferase activity,
which was completely abolished upon pretreatment with
PTX (Figure 6C). We next tested whether knockdown
of Necdin induces recovery of transcriptional activity of
E2F1 reduced by CB1R activation. shRNA for Necdin
(Necdin-shRNA) expression significantly decrease Necdin
expression in U87MG cells (Figure 6D). As shown in
Figure 6E, treatment with Win 55,212-2 inhibited tran-
scriptional activity of E2F1 in dose-dependent manner,
which was completely abolished by Necdin-shRNA expres-
sion. The results indicate that CB1R facilitates U87MG
cell growth suppression through the Gαo-Necdin-E2F1
signaling pathway.

Discussion
In the current investigation, Necdin was identified as a
novel binding partner of Gαo. Interactions between Nectin
and Gαo were observed both in vitro and in vivo. Moreover,
a region within the C-terminal GTPase domain of Gαo ap-
pears to contribute to this interaction. Interestingly, despite
high sequence homology of the GTPase domains of Gαi
and Gαo, Gαi did not interact with Necdin. Necdin also
bound directly to the active form of Gαo with higher affin-
ity than wild-type protein. Accordingly, we propose that
Necdin is a candidate downstream effector for Gαo.
To further ascertain whether Necdin acts as a functional

effector of Gαo, experiments were performed using two
different cell types: (1) 293T and Neuro2a cells transfected
with plasmids encoding Gα and Necdin, and (2) U87MG
cells endogenously expressing CB1R, which triggers the
Gi/o-mediated signaling pathway upon activation. In
transfection experiments, the cellular activities of Necdin
were significantly enhanced by Gαo, but not Gαo/i. As
shown in Figures 4 and 5, Necdin-induced inhibition of
cell proliferation and activation of neuronal differentiation
were enhanced synergistically by Gαo. Expression of Gαo
also led to increased Necdin-E2F1 interactions, represen-
tative of Necdin activity. In U87MG cells, activated CB1R
inhibited cell proliferation via a PTX-sensitive mechanism,
meaning Gi/oα-dependency. Cannabinoid additionally
activated Necdin-mediated signaling, including Necdin-
E2F1 interactions and E2F1-mediated transcriptional
repression. The results collectively suggest that Necdin
functions as a downstream effector for Gαo. Nonetheless,
the function of Necdin is much less understood in G-
protein signaling. We cannot rule out whether Necdin
binds to active Gαo thereby prolonging Gβγ signaling.
However, the finding that expression of active mutant
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subjected to luciferase and β-galactosidase assays. Luciferase activity was normalized to that of β-galactosidase. Data are presented as the average ± SE
of at least three independent experiments. *, p < 0.05; **, p < 0.001.
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of Gαo promoted Necdin-mediated cellular activities
(Figures 4 and 5) suggests, at least at a first approxima-
tion, that Gαo can modulate Necdin functions. Further
experiments will be needed to evaluate this using Gβγ
inhibitor.
Several lines of evidence support the finding that Gαo

modulates neuronal differentiation. Gαo is the most
abundant Gα protein in brain tissue and one of the
major membrane components of growth cones [4,29,30].
Moreover, Gαo is sufficient to enhance neuritogenesis in
neurogenic cell lines, including PC12, N1E-115 and Neu-
ro2A [5,31]. Gαi/o activation induced by CB1R activation
inhibits Rap1GAP and activates STAT3 phosphorylation,
which, in turn, induces neurite outgrowth in Neuo2A cells
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Data are shown as the average ± SE of at least three independent experiments. *, p < 0.05; **, p < 0.001. (D) U87MG cells transfected with pcDNA3.1 or
Necdin-shRNA were subjected to real-time PCR analysis. Data are shown as the average ± SE of at least three independent experiments. *, p < 0.05
compare to pcDNA3.1 level. (E) The cells transfected with pGL3-E2F4B-Luc (0.3 μg) and pCMV-β-gal (0.3 μg) or Necdin-shRNA (0.2 μg) were treated
with indicated concentrations (μM) of Win 55,212-2 for 6 h. luciferase activity was normalized to that of β-galactosidase. Data are shown as the
average ± SE of at least three independent experiments. *, p < 0.001.
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[32]. Consistently, our previous studies demonstrated that
Gαo functions as an inducer of neuronal differentiation.
Gαo overexpression led to new neurite formation via
modulation of protein kinase A (PKA) signaling in the F11
neuroblastoma cell line [6]. Further experiments showed
that Gαo attenuates nuclear translocation of the catalytic
subunit of PKA via direct interactions and augments its
cytosolic effects [24]. Additionally, Gαo stimulated the
activity of Rit, which induced Erk-mediated neuronal
differentiation in Neuro2a cells [7]. Therefore, Gαo medi-
ates signaling of neuronal differentiation by mobilizing
various downstream signaling molecules including Necdin.
We postulate that Necdin-mediated neuronal differen-

tiation is attributable to its activity as a strong growth
suppressor. Necdin exhibits anti-proliferative activity in
various cells and is highly expressed in normal tissues
but downregulated in tumor cells [26,33]. Necdin expres-
sion is suppressed by STAT3 whose activation promotes
tumor development [34-36]. Constitutive expression of
STAT3 induces a decrease in Necdin expression at the
mRNA and protein levels in tumor cell lines [37]. A previ-
ous study demonstrated that a constitutively active form
of Gαo induces STAT3-mediated NIH-3 T3 cell trans-
formation [38]. Thus, we considered the possibility that
Gαo activation induces cell transformation by enhancing
STAT3 activity, in turn, inhibiting Necdin expression.
However, in contrast to previous findings, expression of
Gαo alone did not affect proliferation in 293T cells
(Figure 4). This discrepancy may be explained by the
fact that STAT3 activation is an uncommon signaling
pathway for Gαo activation in 293T cells, compared to
NIH-3 T3 cells.
Considerable evidence supports the theory that cannabi-

noids are potential therapeutic agents for cancer. Cannabi-
noids have been shown to inhibit tumor cell proliferation in
various cell types, including glioma, pheochromocytoma,
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prostate, and leukemia cells [39-42]. Cannabinoids also
inhibit tumor development by blocking angiogenesis and
invasiveness [8,43,44]. As expected, cannabinoid induced
inhibition of cell proliferation in our study. Importantly,
cannabinoid activated Necdin-mediated signaling in a
PTX-sensitive manner. Although CB1R is coupled with
both Gαi and Gαo, Necdin did not interact with Gαi.
Therefore, we propose that the CB1R-Necdin signaling
pathway is mediated by Gαo, independently of Gαi. The
anticancer effects of cannabinoid are mediated via several
signaling pathways [45]. We speculate that together with
previously reported signaling pathways, the CB1R-Gαo-
Necdin-E2F1 pathway contributes to inhibition of cell
proliferation in U87MG cells.
Several assay systems are available to measure the cellu-

lar activities of Gα proteins. For example, Gαq activity can
be measured based on accumulation of inositol phosphate,
which is modulated by phospholipase C, a downstream
effector of Gαq. The amount of accumulated cAMP
represents the activity of adenylyl cyclase, a downstream
effector of Gαi and Gαs. However, an effective assay
system to measure Gαo activity has not been developed
to date owing to the ambiguity of its downstream effec-
tors. Our results showing that Necdin is a candidate
downstream effector of Gαo independent of Gαi may
facilitate the development of a Necdin-specific assay
system for Gαo.
Conclusions
We have identified a novel downstream effector molecule
and signaling pathway for Gαo. Activation of Gαo enhances
Necdin-E2F1 interactions, which, in turn, modulate cell dif-
ferentiation and proliferation. Our current findings present
an additional novel signaling pathway to explain the diverse
roles of Gαo and cannabinoid receptor.
Methods
Construction of plasmids
The pRC/CMV-Necdin plasmid was a generous gift from
Dr. K. Yoshikawa (Osaka University, Japan). pcDNA3-
E2F1 and pGL3-E2F4B-Luc reporter plasmids were kindly
provided by Dr. J. Cheong (Pusan National University,
Korea). Plasmids pRC/CMV-GαoWT and pRC/CMV-
GαoQ205L encode GαoWT and GαoQ205L of Gαo,
respectively [41]. To generate pcFLAG-Necdin, a FLAG-
Necdin expression plasmid, pRC/CMV-Necdin, was
amplified using the primers 5′-CAT GTC GGA ACA
AAG TAA G-3′ and 5′-ATT-TAG-GTG-ACA-CTA-
TAG-3′. Amplified PCR products were inserted into
pGEM-T Easy plasmid (Promega, Madison, WI, USA).
pcFLAG-Necdin was generated by digesting pGEM-T-
Necdin with the restriction enzymes, NotI and XbaI,
and ligating the fragment into the corresponding sites
of pcFLAG. pcHA-Necdin encoding HA-Necdin was
constructed by digesting pcFLAG-Necdin with NotI and
XbaI and ligating the fragment into the corresponding
restriction sites of pcHA. pGEX-5X-Necdin, an expression
plasmid for GST-Necdin, was generated by digesting
pcFLAG-Necdin with EcoRI and cloning into the corre-
sponding restriction sites of pGEX-5X (GE Healthcare
Life Science, Piscataway, NJ, USA). To generate psi-RNA-
hH1ZeoG2-Necdin, Necdin-shRNA plasmid, pcFLAG-
Necdin was amplified using the primers 5’-GTA CCT
CGC CCG AAG AAC GGA TAG AAG ATC AAG
AGT CTT CTA TCC GTT CTT CGG GCT TTT TGG
AAA-3’ and 5’-AGC TTT TCC AAA AAG CCC GAA
GAA CGG ATA GAA GAC TCT TGA TCT TCT ATG
CGT TCT TCG GGC GAG-3’. Amplified PCR products
were inserted into psi-RNA-hH1ZeoG2 plasmid (Invivo-
gen, San Diego, CA) using HindIII and ACC65I restriction
enzymes.

Yeast two-hybrid screening
The bait plasmid (pHybTrp/Zeo-GαoQ205L) was trans-
formed into the yeast reporter cell line, L40, with the
mouse brain cDNA library (Clontech, Palo Alto, CA, USA)
as recommended by the manufacturer. The methods used
for isolation of positive clones are described in a previous
report [41].

Cell culture and transfection
Human embryonic kidney cell line, 293T, mouse neuro-
blastoma cell line, Neuro2a, and human glioblastoma cell
line, U87MG, were maintained in DMEM supplemented
with 10% fetal bovine serum (FBS), 100 units/ml penicillin
and 100 μg/ml streptomycin. 293Tand Neuro2a cells were
transiently transfected with the indicated concentrations
of plasmids using calcium phosphate and polyethyleni-
mine, respectively. For affinity binding assays, after 48 h
of transfection, cells were harvested and extracted with
PBTX buffer (PBS containing 5 mM MgCl2, 1 mM EDTA,
1% Triton X-100, 5 μg/ml aprotinin, 10 μg/ml leupeptin,
2 μg/ml pepstatin A, and 2 mM phenylmethylsulfonyl
fluoride) for 1 h at 4°C with gentle rotation.

GST pulldown assay
BL21 bacterial cells transformed with pGEX2T-Gαo
plasmids [24] encoding GST-Gαo fusion proteins were
induced with 0.1 mM IPTG and lysed using a standard pro-
tocol. Lysates were incubated with glutathione-Sepharose
4B beads (GE Healthcare Life Science) in PBTX (total
volume of 500 μl) for 1 h at 4°C with gentle rotation, and
the beads washed extensively with PBTX buffer. 293T cell
extracts (500 μg) expressing 10 μg FLAG-Necdin were
added to GST-Gαo-bound beads and incubated for 1 h at
37°C (total volume of 500 μl). After extensive washing
with PBTX buffer, bound proteins were eluted with SDS
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sample buffer and subjected to immunoblot analysis with
antibodies against FLAG (1:500 dilution, Sigma-Aldrich,
St. Louis, MO, USA).

Direct interactions between His-Gαo and GST-Necdin
Fusion proteins, His-Gαo and GST-Necdin, were purified
from BL21 cells using glutathione-Sepharose 4B beads
and HisTrapTM, respectively [41]. His-Gαo (600 nM) was
incubated with 30 μM GDP and AlF4

− (mixture of 10 mM
NaF and 30 μM AlCl3), as indicated, in HEMNDL buffer
(20 mM Na–HEPES, pH 8.0, 1 mM EDTA, 2 mM MgSO4,
150 mM NaCl, 1 mM dithiothreitol, and 0.05% Triton X-
100) for 1 h at 30°C. GST-Necdin was added to the reac-
tion at a final concentration of 200 nM, and incubated for
an additional 20 min at 20°C. Following the addition of
glutathione-Sepharose 4B beads, reactions were incubated
for 1 h at 4°C with gentle rotation. Beads charged with
proteins were analyzed with the indicated antibodies.

Immunoprecipitation assay
293T and Neuro2a cells (1.5 × 106 cells/dish) were plated
on 100 mm tissue culture dishes and transiently trans-
fected with the appropriate combinations of expression
plasmids. U87MG cells (1 × 105 cells/dish) were plated
on 100 mm tissue culture dishes. After 24 h, cells were
serum-starved with 2% FBS for 20 h. Cells were treated
with 20 μM Win 55,212-2, a CB1R agonist, for 1 h in
the absence or presence of 30 ng/ml pertussis toxin
(PTX, Calbiochem, La Jolla, CA, USA), a Gi/oα inhibitor.
Pretreatment with PTX was performed for 20 h prior to
Win 55,212-2 application. Newborn rat brain extracts
were prepared as reported previously [24]. Cell or brain
extracts were pre-cleared by incubating with 20 μl Protein
A-Sepharose CL-4B beads (10% slurry) (GE Healthcare
Life Science) for 20 min, followed by the addition of
1 μg of the indicated antibodies with gentle rotation for
4 h at 37°C, and subsequently, 50 μl beads. After 2 h of
incubation at 4°C, beads were washed with PBTX. Bound
proteins were subjected to immunoblot analysis using
antibodies against FLAG, Gαo (1:1000, Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), Necdin (1:500, Cayman
Chemicals, Ann Arbor, MI, USA), and E2F1 (1:200, Santa
Cruz Biotechnology).

Immunofluorescence assay
293T cells (1 × 103 cells/coverslip) were plated on cover-
slips and transfected with expression plasmids for Gαo
(0.1 μg) and FLAG-Necdin (0.25 μg). After 48 h, cells
were fixed with 4% paraformaldehyde in PBS for 15 min
and incubated for 1 h at room temperature with anti-
bodies against Gαo and FLAG. Cells were washed with
PBS and incubated with Alexa Fluor 488-conjugated
goat anti-rabbit IgG and Alexa Fluor 568-conjugated
goat anti-mouse IgG (Life Technologies, Gaithersburg,
MD, USA) for 30 min at room temperature. After wash-
ing with PBS and counterstaining with DAPI (Vector La-
boratories, Burlingame, CA, USA), cells were observed
under a LSM510 confocal laser scanning microscope (Carl
Zeiss, Thornwood, NY, USA).

Tissue preparation and immunohistochemistry
Pregnant mice (C57BL/6 J) were killed via cervical dis-
location and E15.5 embryos were placed immediately in
ice-cold 4% PFA. After overnight fixation, tissues were
embedded in paraffin and sectioned to 5-μm thickness.
Antigens were retrieved by boiling in 10 mM sodium
citrate (pH 6.0) in a microwave oven, the sections were
blocked in PBS with 5% normal serum, and probed with
primary antibodies against Necdin (1:100; Santa Cruz
Biotechnology) and Gαo (1:400). The sections were then
incubated with Alexa Fluor 488- or 594-conjugated anti-
IgG secondary antibodies and counterstained with Hoechst
33258 (Molecular Probes, Eugene, OR). Fluorescent images
were acquired using a Zeiss LSM710 confocal microscope
(Carl Zeiss).

Bromodeoxyuridine (BrdU) incorporation assay
293T and U87MG cells were plated on 6-well plates at a
density of 2 × 104 cells per well. 293T cells were trans-
fected with the appropriate combinations of indicated
plasmids. To identify transfected cells, we co-transfected
with the GFP expression plasmid in all experiments.
U87MG cells were serum-starved and pretreated with
30 ng/ml PTX. After 20 h, cells were treated with 3 μM
Hu210 (Tocris Bioscience, Ellisville, Mo, USA), a CB1R
agonist for 6 h. Both cell lines were labeled with 10 μM
BrdU (Sigma-Aldrich), 12 h before harvest. Next, cells
were washed with PBS and fixed in 4% paraformalde-
hyde in PBS for 15 m. After fixation, cells were subjected
to immunofluorescence staining against BrdU [46].

Neurite outgrowth assay
Neuro2a cells were plated on 6-well tissue culture dishes
at a density of 3 × 104 cells per well. Cells were transfected
with the indicated combinations of plasmids, and 100 ng
of pEGFP. After 24 h, cells were serum-starved for 36 h.
Fluorescence images were observed with a IX71 fluores-
cence microscope (Olympus, Tokyo, Japan), and the per-
centage of neurite-bearing cells among the GFP-positive
population calculated. Cell processes greater than cell
body in length were counted as neurites.

Real-time PCR
Total RNA was extracted from cultured cells with the
Easy-spin total RNA extraction kit (Intron Biotechnol-
ogy, Sungnam, Korea), according to the manufacturer’s
instructions. First-strand complementary DNA (cDNA)
was synthesized using 1 μg of total RNA as the template,
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500 ng of oligo (dT), and AccuPower™ RT-Premix (Bio-
neer, Daejeon, Korea) in a total volume of 20 μl,
according to the manufacturer’s recommendation. The
relative mRNA expression of Necdin was assessed using
TOPreal™ qPCR premix (Enzyomics, Daejeon, Korea) on
the CFX96™ PCR System (Bio-Rad, Richmond, CA). Primer
sequences used were as follows: Necdin, 5’-GCT CAT
GTG GTA CGT GTT GG-3’; and 5’-TGC TTC TGC ACC
ATT TCT TG-3’; GAPDH, 5’-TGG GCT ACA CTG AGC
ACC AG-3’; and 5’-GGG TGT CGC TGT TGA AGT
CA-3’. The Necdin mRNA values were normalized to the
amount of GAPDH that was measured.

Luciferase reporter gene assay
Neuro2a cells were plated on 6-well tissue culture dishes
at a density of 3 × 104 cells per well. Cells were transfected
with the indicated combination of plasmids, together with
0.1 μg of pGL3-E2F4B-Luc reporter plasmids containing
four consensus E2F binding sites [47]. For normalization
of transfection efficiency, cells were transfected with
0.3 μg of β-galactosidase expression plasmid (pCMV-
β-gal). The total amount of plasmid DNA used for
transfection was maintained by adding pcDNA3 (Life
Technologies). After 48 h, cell lysates were assayed for
luciferase and β-gal activity using the Luciferase Assay
System (Promega, Madison, WI, USA), as recommended
by the manufacturer. U87MG cells were plated on 6-well
plates at a density of 1 × 104 cells per well and transfected
with 0.3 μg of pGL3-E2F4B-Luc reporter plasmids using
Lipofectamine 2000 (Life Technologies). After 24 h, cells
were serum-starved for 16 h and treated with the indicated
amounts of Hu210 for 6 h in the absence or presence of
30 ng/ml PTX. Pretreatment with PTX was performed for
1 h before Hu210 application. For knockdown experiment,
U87MG cells transfected with pGL3-E2F4B-Luc (0.3 μg)
and Necdin-shRNA (0.2 μg) were treated with indicated
amount of Win 55,212-2 for 6 h.

Additional files

Additional file 1: Figure S1. Gαo enhances cell growth suppression
induced by Necdin. 293T cells were transfected with plasmids encoding
various types of Gα (0.5 μg) and FLAG-Necdin (1 μg), as indicated. To
identify transfected cells, we co-transfected with the pEGFP (100 ng).
After 24 h of transfection, cells were labeled with 10 μM BrdU for 12 h
and stained with antibodies against BrdU and GFP. Scale bar, 20 μm.

Additional file 2: Figure S2. Gαo promotes Necdin-induced neurite
outgrowth. Neuro2a cells were transfected with plasmids encoding various
types of Gα (0.5 μg) and FLAG-Necdin (1 μg). To identify transfected cells,
we co-transfected with the pEGFP (100 ng). After 24 h of transfection, cells
were serum-starved and observed 30 h later. Scale bar, 50 μm.

Additional file 3: Figure S3. Effect of E2F1 and Necdin on E2F4B-
luciferase reporter gene activity. Neuro2a cells were transfected with the
indicated combinations of plasmids encoding FLAG-Necdin (0.25 μg),
E2F1 (0.03 μg), E2F4B-Luc reporter gene (0.1 μg), and β-galactosidase
(0.3 μg). The total amount of plasmid DNA used for transfection was
maintained by adding pcDNA3. After 48 h, cells were subjected to
luciferase and β-galactosidase assays. Luciferase activity was normalized
to that of β-galactosidase. Data are presented as the average ± SE of at
least three independent experiments. *, p < 0.001.
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