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Abstract

Helicobacter pylori colonizes the human gastric epithelium and induces chronic gastritis, which can lead to gastric
cancer. Through cell-cell contacts the gastric epithelium forms a barrier to protect underlying tissue from
pathogenic bacteria; however, H. pylori have evolved numerous strategies to perturb the integrity of the gastric
barrier. In this review, we summarize recent research into the mechanisms through which H. pylori disrupts
intercellular junctions and disrupts the gastric epithelial barrier.

Review
The gastric epithelium and Helicobacter pylori
The gastric epithelium is comprised of a single layer of
cells that invaginate to form highly organized gastric
glands, populated by a distinct variety of cell types. The
gastric epithelium can mediate digestive processes; how-
ever, an essential function of the gastric mucosal epithe-
lium is to maintain a protective barrier that separates
luminal contents containing pathogenic microorganisms
such as Helicobacter pylori, from the underlying tissue
compartments. H. pylori is a Gram-negative bacterial
pathogen that selectively colonizes the gastric epithelium
of approximately half of the world’s population [1]. The
most common outcome of H. pylori infection is chronic
asymptomatic gastritis [2]; however, long-term coloniza-
tion with H. pylori significantly increases the risk of
developing gastro-duodenal diseases. Among infected
individuals, approximately 10% develop peptic ulcer dis-
ease, 1-3% develop gastric adenocarcinoma, and less than
0.1% develop mucosa associated lymphoid tissue (MALT)
lymphoma [3]. Accordingly, H. pylori is classified as a
Type I carcinogen, and is considered to be the most com-
mon etiologic agent of infection-related cancers, which
represent 5.5% of the global cancer burden [4].
H. pylori strains are extremely diverse and have evolved

sophisticated virulence strategies that affect host cell sig-
naling pathways and play an important role in

determining the outcome of infection [1]. Disease-asso-
ciated H. pylori strains possess the cag pathogenicity
island (cag PAI), which encodes components of a bacter-
ial type IV secretion apparatus, and functions to export
the terminal product of the cag PAI, CagA, across the
bacterial membrane and into host gastric epithelial cells
[5-7]. There are two mechanisms reported through
which H. pylori may translocate CagA into host cells.
One mechanism requires the interaction of CagL, a pilus
localized component of the type IV secretion apparatus,
with integrin a5b1 on host epithelial cells [8]. An alterna-
tive mechanism is the type IV secretion apparatus
induces externalization of phosphatidylserine, which
resides on the inner leaflet of the cell membrane under
resting conditions. CagA is then able to interact with
phosphatidylserine and gain entry to host epithelial cells
[9]. Although all H. pylori strains induce gastritis, strains
that contain the cag PAI (cag+) augment the risk for
severe gastritis, atrophic gastritis, and distal gastric can-
cer compared to those strains that lack the cag island
(cag-) [10-21]. Following injection into host epithelial
cells, CagA becomes tyrosine phosphorylated at gluta-
mate-proline-isoleucine-tyrosine-alanine (EPIYA) motifs,
which induces cell morphological changes, initially
termed the ‘hummingbird phenotype’. These alterations
are linked to cellular migration and, importantly, may
compromise the integrity of the gastric barrier [22-26].
Non-phosphorylated CagA also exerts effects within gas-
tric epithelial cells that contribute to pathogenesis;
including, but not limited to, activation of b-catenin, dis-
ruption of apical-junctional complexes, and loss of cellu-
lar-polarity [27-32]. Non-phosphorylated CagA interacts
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with the cell adhesion protein E-cadherin, the hepatocyte
growth factor receptor c-Met, phospholipase PLC-g, the
adaptor protein Grb2, and the kinase PAR1b/MARK2
[30,32-34], which culminate in pro-inflammatory and
mitogenic responses, disruption of cell-cell junctions, and
loss of cell polarity. These events will be discussed in
more detail in subsequent sections (see sections: Disrup-
tion of the tight junction by H. pylori and Disruption of
the adherens junction by H. pylori).

Intercellular junctions
Intercellular contacts are required to maintain the mole-
cular architecture and selective barrier function of
epithelial tissue. Within the gastric mucosa, barrier
function is essential for preventing potentially harmful
elements present in the gastric lumen from gaining
access to the gastric mucosa. Intercellular junctions
include the tight-junction which is juxtaposed at the
most apical region of polarized cells, and the adherens
junction which is located immediately below; collec-
tively, these comprise the apical junctional complex
which plays a pivotal role in regulating paracellular flux
of ions and small molecules. The apical junctional com-
plex also maintains cell polarity and regulates cell prolif-
erative processes through relatively undefined signaling
pathways. In addition to the apical junctional complex,
gap junctions and desmosomes are also constituents
which contribute to cell-cell contacts (Figure 1). In

contrast to the apical junctional complex, which forms a
tight seal between epithelial cells, gap junctions link the
cytosol of adjacent cells to permit ions and small mole-
cules to shuttle between cells [35]. Little is known in
regard to how H. pylori may alter gap junctions,
although there are data to suggest that CagA-positive
strains may down-regulate gap junctions [36]. Desmo-
somes tightly tether adjacent cells through attachment
to intermediate filaments [37], and loss of desmosomes
has recently been linked to tumor development and
early invasion [38,39]. To our knowledge, there are no
reports of H. pylori interacting with desmosomes,
making this an attractive area of study. What is clear,
however, is that H. pylori preferentially adhere to gastric
epithelial cells in close proximity to the apical junctional
complex [27,40], and can alter localization of compo-
nent proteins that constitute apical-junctional complexes
[27,41-43]. Furthermore, barrier function is compro-
mised in H. pylori-induced gastritis [44], and disruption
of the apical junctional complex is associated with gas-
tric cancer [45].

Overview of tight junctions
Tight junctions are located at the most apical region of
the cell; they mediate adhesion between epithelial cells,
and form tight seals between cells to create the major
barrier in the paracellular pathway. Tight junctions are
highly dynamic structures consisting of integral

Figure 1 Intercellular junctions form the epithelial barrier. Several bacteria, including H. pylori, and viruses interact with and disrupt cell-cell
junctions of polarized epithelia. Intercellular junctions include tight junctions, adherens junctions, desmosomal junctions, and gap junctions.
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membrane proteins and membrane-associated proteins,
which collectively form a complex protein network.
Scaffolding proteins link transmembrane proteins to the
actin cytoskeleton. Integral membrane proteins, such as
occludin, claudins, and junctional adhesion molecules
(JAMs) are important components of the tight junction
that span junctions and connect membranes on adjacent

cells to form a seal (Figure 2). Collectively, these compo-
nents play critical roles in maintenance of barrier func-
tion, cell polarity, and intercellular adhesion.
Occludin was the first transmembrane tight junction

protein to be identified [46], and it contains four trans-
membrane domains, two extracellular loops, and two
intracellular loops. The C-terminus physically associates

Figure 2 Dysregulation of the tight junction by H. pylori. H. pylori preferentially bind in close proximity to the tight junction and disrupt
gastric barrier function, cell adhesion, and cell polarity which culminates in an invasive phenotype. Tight junctions are composed of the integral
membrane proteins occludin, claudins, and junctional adhesion molecule (JAM)-A, as well as zonula occludens-1 (ZO-1). Tight junction function
is disrupted by urease activity and phosphorylation of myosin light chain (MLC) by myosin light chain kinase (MLCK) or Rho kinase (ROCK).
Translocated CagA interacts with partitioning-defective 1 (PAR1) to inhibit phosphorylation by blocking PAR1 kinase activity and disrupts the
tight junction. VacA also increases tight junction permeability.
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with ZO-1 and this interaction is essential for tight
junction assembly [47]. Occludin deficient mice exhibit
a complex phenotype, and initial studies indicated that
occludin was not required for tight junction assembly
or maintenance of barrier function [48]. However,
subsequent characterization of occludin deficient mice
suggests that occludin is essential for regulation of
epithelial tight junctions. Occludin is highly phosphory-
lated on serine and threonine residues and phosphory-
lated occludin is the form that is associated with the
tight junction [49]. Recent work suggests PKCh and
PKCζ phosphorylation of occludin is required for com-
plete assembly of the tight junction [50,51].
Claudins represent a family of 24 transmembrane pro-

teins and are the main constituents of the tight junction
intercellular strands [45]. Claudins, like occludin, are
tetraspanning proteins with two extracellular loops and
two intracellular loops; however, they do not posses
sequence homology to occludin. Claudins mediate
calcium-independent cell-cell adhesion and form either
homodimers or heterodimers. Different combinations of
claudin isoforms can mediate cell-type-specific differ-
ences in tight junctions [45].
JAM-A is a member of the immunoglobulin superfam-

ily of proteins and contains an extracellular domain
comprised of two Ig-like domains, a single transmem-
brane domain, and a short cytoplasmic C-terminal
domain with a PDZ binding motif that is important for
the interaction with tight junction scaffolding proteins.
The extracellular domain of JAM-A contains dimeriza-
tion motifs and forms homophilic contacts. The detailed
role of JAM-A in regulating tight junction function is
not fully understood; however, since it is known to
interact with many other proteins, JAM-A may regulate
tight junction formation by targeting proteins to the
tight junction and may regulate epithelial permeability,
inflammation, proliferation and migration [52,53].
Dimerization of JAM-A is required for the assembly of a
protein complex with the PDZ domain-containing mole-
cules Afadin and PDZ-guanine nucleotide exchange fac-
tor (GEF). This activates Rap1A, which stabilizes b1
integrin protein levels and increases cell migration [53].
JAM-A also acts as a receptor for viruses and is required
for hematogenous dissemination of reovirus [54].
Whether JAM-A is utilized as a receptor by bacteria is
currently unknown.
In addition to integral membrane proteins, tight junc-

tion proteins also include membrane-associated proteins
such as zonula occludens-1 (ZO-1). ZO-1 is a member
of the MAGUK (membrane-associated guanylate kinase
homologs) family, characterized by a PDZ domain, SH3
domain and guanylate kinase domain. ZO-1 interacts
with the C-terminus of occludin [55] and with claudins
[56], and can also interact with proteins found in the

adherens junction [57] and attach to the actin cytoskele-
ton [58].

Disruption of the tight junction by H. pylori
Disruption of the tight junction complex is associated
with a variety of human diseases and cancers, including
cancers of the gastrointestinal tract [45]. H. pylori are
commonly found adhering to gastric epithelial cells, pre-
ferentially in close proximity to the apical junctional
complex [27,40,59], possibly to gain maximal access to
essential nutrients released by gastric epithelial cells
[60]. Viable H. pylori have also been identified within
the lamina propria, gastric lymph nodes, and within the
intracellular canaliculi of parietal cells [61-63]; thus, an
alternative hypothesis is that H. pylori may utilize the
tight junction as a means to gain entry to the lamina
propria [64].
Numerous studies have demonstrated that H. pylori

modulates the tight junction [27,29,41-43,65-68]; how-
ever, what is less clear are the specific H. pylori consti-
tuents that mediate these changes in barrier function. In
studies using polarized MDCK cells infected with a var-
iant of H. pylori that was cell-adapted for increased
adhesion, translocated CagA was shown to recruit ZO-1
and JAM-A to the site of bacterial attachment [27]. In
MDCK cells, ectopic expression of GFP-CagA was also
shown to disrupt the tight junction by inducing mis-
localization of ZO-1 to the basolateral membrane, and
inducing loss of apicobasal polarity characterized by a
redistribution of the apical glycoprotein gp135 to the
basolateral membrane and adoption of an invasive cellu-
lar phenotype [29]. Concordant with studies using
MDCK cells, co-culture of primary human gastric
epithelial cells results in membrane disruption of ZO-1
and redistribution of ZO-1 to small vesicles in the cyto-
plasm. However, the precise role of CagA in this cascade
remains to be fully determined as total levels of ZO-1
protein remain unchanged between uninfected cells and
those infected with CagA-positive or CagA-negative
strains [42].
CagA has also been shown to dysregulate the tight

junction through an interaction with partitioning-defec-
tive 1b (PAR1b)/microtubule affinity-regulating kinase 2
(MARK2). PAR1b is one of four structurally related
members of the PAR1 family of kinases, and has an
essential role in maintaining epithelial cell polarity by
phosphorylating microtubule-associated proteins
(MAPs), and destabilizing microtubules to permit the
asymmetric distribution of molecules required for cells
to maintain polarity [32,69-71]. CagA binds all four
PAR1 isoforms with varying affinity [72], and the
PAR1b-binding region of CagA has been identified as
the 16-amino-acid CagA sequence also termed the
CagA-multimerization (CM) sequence, which is involved
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in CagA dimerization [73]. The initial 14 amino acids of
the CM motif bind to the MARK2 kinase substrate
binding site, thereby mimicking a host cell substrate
[74] to inactivate the kinase activity of PAR1, leading to
defects in epithelial cell polarity and disruption of tight
junctions [32] (Figure 2). Interestingly, the number of
CM repeats correlates with the virulence potential of
CagA. Within Western H. pylori strains, the number of
CagA CM repeats is directly proportional to the ability
of CagA to bind PAR1b, while the CM sequence of
CagA isolated from East-Asian H. pylori strains binds
PAR1b more strongly than the CM sequence isolated
from Western strains of H. pylori [75]. There is also a
direct correlation between the level of PAR1b-binding-
activity of CagA and the extent of cellular morphologic
aberrations or disruption of the tight junction [75].
In other studies, CagA-independent alterations in tight

junction structure and function have been demon-
strated. The addition of purified VacA to MDCK cells
lowers transepithelial electrical resistance (TER) and
increases tight junction permeability to low-molecular
weight molecules and ions. However, purified VacA-
induced changes in tight junction function were not
associated with alterations in ZO-1, occludin, or the
adherens junction protein E-cadherin [76]. This was
confirmed using live bacterial infection of MDCK cells
with an isogenic vacA mutant strain. In this system, no
alterations were seen in TER over a 20 hour infection
[68]. In contrast, co-culture of MKN28 gastric epithelial
cells with an isogenic vacA mutant strain decreased
TER to the same extent as wild-type H. pylori [43]. We
speculate that these reported differences in the role of
VacA on modulating TER may be due to using different
cell models and/or different strains of H. pylori. It
would be interesting to determine in vivo if VacA is
required for gastric barrier disruption.
In two independent studies, H. pylori strain SS1 was

reported to disrupt barrier function in the gastric
mucosa [41,66]. These findings also suggest that CagA
is not important for H. pylori disruption of the tight
junction, because although H. pylori strain SS1 is CagA
positive, it lacks a functional type IV secretion system
and cannot inject CagA into epithelial cells [77].
Another research group used canine intestinal epithelial
cells, and found that co-culture of these cells with H.
pylori stain SS1 induces redistribution of claudin-4 and
claudin-5 and decreases membrane expression of these
two tight junction proteins. Interestingly, the distribu-
tion and expression of ZO-1 and JAM-A were not chan-
ged [41]. More recently, the H. pylori Cag+ strain 60190
was found to disrupt claudin-4 localization, and decrease
cellular expression of claudin-4 in a CagA- and VacA-
independent manner [78]. Further dissection of the sig-
naling pathways involved suggested that H. pylori

phosphorylates IL-1 receptor type I, and in a Rho
kinase-dependent manner disrupts claudin-4 at the tight
junction [78].
The influence of H. pylori generated ammonium on

tight junctions has also been investigated. Ammonium
produced by H. pylori reduces TER in Caco-2 human
colonic epithelial cells, which is associated with
increased levels of a 42 kDa truncated form of occludin
[67]. Urease catalyzes the hydrolysis of urea into carbon
dioxide and ammonia, and functional urease activity was
found to be required for H. pylori-induced disruption of
TER in gastric epithelial cells [43] (Figure 2).
Paracellular permeability controlled by the tight junc-

tion can be regulated by myosin light chain kinase
(MLCK)-mediated phosphorylation of myosin light
chain (MLC), which increases the tension placed on the
tight junction [79]. In SCBN canine intestinal cells it
was determined using a selective inhibitor of MLCK,
that activation of MLCK by H. pylori strain SS1 leads to
decreased barrier function and increased expression of
claudin-4 and claudin-5 [41]. Collectively these data sug-
gest that in a CagA-independent manner, H. pylori
decreases expression of claudin-4 and claudin-5, acti-
vates MLCK and subsequently disrupts barrier function
[41]. In another study using a membrane-permeable
inhibitor of MLCK (PIK) [80], activation of MLCK by H.
pylori and the subsequent phosphorylation of MLC were
also shown to disrupt barrier function by decreasing
TER in human gastric epithelial cells, and ureB was
required for maximal phosphorylation of MLC [43].
PKC activation may also be important for H. pylori-reg-
ulation of the tight junction [65] as activation of PKC
increases TER by reducing phosphorylation of MLC [81]
and decreased TER in T84 colonic epithelial cells
induced by H. pylori was prevented by concurrent acti-
vation of PKC using the phorbol ester phorbol 12-myris-
tate 13-acetate (PMA) [65].
Several studies have shown that H. pylori disrupts

occludin localization at the tight junction [41,43,66].
This has been observed in two different cell line models
[41,43], as well as in two different mouse models of H.
pylori infection [43,66]. Despite the consistency in
results between models, the H. pylori virulence factor
required for disruption of occludin remains to be deter-
mined. The precise role of occludin in regulating barrier
function is currently unclear, although, occludin is
implicated in regulation of gastric barrier function [82],
and emerging evidence suggests an important role for
occludin in mediating barrier permeability.
Alterations in tight junction proteins induced by H.

pylori and the virulence factors that are important for
this disruption appear to be strain specific and discre-
pancies between different research groups are likely con-
founded by the use of different model systems. Another
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factor that may contribute to discrepancies as to the role
of CagA in disrupting the tight junction may be the
polarization state of the cells under study [60,83].
Recent work examining the role of CagA for replication
of H. pylori on MDCK cells has shown CagA-dependent
as well as CagA-independent effects, depending on the
polarization state of the host cell. CagA is required for
H. pylori to disrupt MDCK cell polarity, and CagA-defi-
cient H. pylori are not able to replicate on polarized
cells when they are unable to access nutrients from the
basolateral surface [60].

Adherens junction
Adherens junctions are required for maintenance of
adhesive cell-cell contacts, cell polarity, and for signal
transduction to the nucleus to regulate transcription.
Adherens junctions are dynamic structures and are
formed on a foundation of calcium-dependent homophi-
lic contacts between E-cadherin on the surface of adja-
cent epithelial cells [84]. Other key components of the
adherens junction are the armadillo protein family
members p120-catenin (p120) and b-catenin, and the
actin-binding protein a-catenin. E-cadherin has long
extracellular and cytoplasmic domains; the extracellular
domains of E-cadherin form homophilic interactions
[85], while the cytoplasmic tail interacts directly with
several intracellular proteins including p120 and b-cate-
nin, which in turn bind a-catenin [86-88]. Previous data
suggested that a-catenin interacts directly with the actin
cytoskeleton; however this has been called into question
as the interactions between b-a-catenin and a-catenin-
actin were not found to occur simultaneously in vitro
[89,90]. More recently EPLIN (epithelial protein lost in
neoplasm) was identified as an a-catenin binding part-
ner, and EPLIN was determined to mediate the interac-
tion of the cadherin-catenin complex with actin [91]
(Figure 3). There are currently no published reports as
to whether H. pylori may disrupt the adherens junction
through interactions with EPLIN, making this a poten-
tially fruitful area of study.

Disruption of the adherens junction by H. pylori
In numerous studies, H. pylori infection has been shown
to induce E-cadherin gene promoter methylation, which
ultimately leads to a reduction in E-cadherin expression
[92-94]. Loss of E-cadherin function is associated with gas-
tric cancer [92-94], and hypermethylation of the E-cad-
herin promoter can be reversed by eradication of H. pylori
[93-95]. Decreasing the stability of the adherens junction
by altering E-cadherin expression may be one mechanism
through which H. pylori disrupts gastric barrier function
and promotes disease progression (Figure 3).
H. pylori infection disrupts the adherens junction and

initiates translocation of E-cadherin, b-catenin, and

p120 from the membrane into the cytoplasm of epithe-
lial cells [31,96-98]. Specifically, transfected CagA physi-
cally interacts with E-cadherin in a manner that does
not require CagA tyrosine phosphorylation [30]. The
interaction of CagA with E-cadherin results in destabili-
zation of the E-cadherin/b-catenin complex, and accu-
mulation of cytoplasmic and nuclear b-catenin, which
subsequently transactivates b-catenin-dependent genes
that may promote carcinogenesis [30,99] (Figure 3). It is
now thought that CagA not only interacts with E-cad-
herin, but also interacts with p120, and forms a multi-
protein complex composed of c-Met, E-cadherin, and
p120. This prevents tyrosine phosphorylation of c-Met
and p120, and attenuates the invasive phenotype
induced by CagA [99]. Through activation of PI3-K/Akt
signaling by non-phosphorylated CagA, H. pylori also
activates b-catenin and downstream pathways associated
with disease development [100]
Under normal physiological conditions, cytoplasmic

b-catenin is regulated by glycogen synthase kinase-3b
(GSK-3b), which phosphorylates b-catenin within a
multi-protein inhibitory complex that includes the ade-
nomatous polyposis coli (APC) tumor suppressor pro-
tein. This complex constitutively targets b-catenin for
degradation by the ubiquitin-proteasome pathway
[101]. However, in gastric adenocarcinoma along with
other cancers, increased expression of b-catenin, muta-
tions within APC, and/or inhibition of GSK-3b are fre-
quently observed, all of which function to stabilize b-
catenin in the cytoplasm [102]. Other mechanisms
through which H. pylori induces increased cytoplasmic
expression of b-catenin are via PI3K-dependent inacti-
vation of GSK-3b [100,103], and direct interaction with
membrane associated b-catenin via CagA [30,104].
Cytoplasmic b-catenin subsequently translocates to the
nucleus where it interacts with T-cell factor/lymphoid
enhancer factor-1 (Tcf/LEF-1) transcription factors to
regulate transcription of genes that can influence carci-
nogenesis [30,104]. In a gerbil model of infection,
nuclear accumulation of b-catenin occurs following
infection with carcinogenic Cag+ H. pylori strains [28].
Concordantly, in human gastric biopsies there is an
increase in levels of nuclear b-catenin in gastric epithe-
lium harvested from patients infected with H. pylori
cag+ strains when compared to persons infected with
H. pylori cag- strains, or uninfected persons [28].
Recent work has shed new light on the role of CagA
in disrupting the adherens junction with the discovery
of an inhibitory domain within the N-terminus of
CagA [105]. The first 200 amino acids of the CagA N-
terminus counteract host responses evoked by the C-
terminus of CagA and reduce host-cell responses by
strengthening cell-cell contacts and decreasing CagA-
induced b-catenin activity [105]. Thus it appears that
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CagA has evolved domains to tightly regulate b-catenin
activation within host cells.
Although important, CagA is not the only bacterial

factor that disrupts adherens junction proteins
[97,106-108]. In a Mongolian gerbil model of gastric
cancer, inactivation of the H. pylori outer membrane
protein OipA decreased nuclear localization of b-cate-
nin and reduced the incidence of gastric cancer, sug-
gesting OipA may be associated with the redistribution
of b-catenin and promotion of the carcinogenic pro-
cess [106]. Proteolytic cleavage of E-cadherin is inde-
pendent of CagA in studies that utilized a human
breast cancer cell (MCF-7) model [97], and in human
gastric NCI-N87 cells [109]. Recent work has identified
H. pylori high-temperature requirement A (HtrA) as a
novel secreted virulence factor that cleaves E-cadherin

and disrupts the adherens junction [107], (Figure 3).
Loss of E-cadherin from the adherens junction is also
associated with dissociation of b-catenin and p120
from the adherens junction into the cytosol. Similar to
findings by Bebb et al. [108], b-catenin did not translo-
cate to the nucleus, and as such, did not modulate
transcription [97].
Under normal physiological conditions, nuclear

expression of p120 is low; however, in tumor cells,
expression of p120 is elevated [110-112]. H. pylori has
recently been associated with mislocalization of p120
to the nucleus in human gastric epithelia, and in
infected murine primary gastric epithelial cells [42,98].
Further analysis of downstream signaling pathways
determined that p120 mis-localized to the nucleus in
response to H. pylori acts to relieve transcriptional

Figure 3 Dysregulation of the adherens junction by H. pylori. H. pylori-translocated CagA interacts with E-cadherin and p120. This
destabilizes the adherens junction and results in nuclear translocation of b-catenin and p120 and alterations in transcriptional activity. The H.
pylori outer membrane protein OipA disrupts adherens junctions through redistribution of b-catenin, and H. pylori-secreted high-temperature
requirement A (HtrA) cleaves E-cadherin, disrupting the adherens junction. Hypermethylation of the E-cadherin promoter also occurs in response
to H. pylori infection and epithelial protein lost in neoplasm (EPLIN) binds a-catenin and links the cadherin-catenin complex with actin.
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repression of mmp-7, a matrix metalloproteinase impli-
cated in gastric tumorogenesis, by an interaction with
Kaiso [98]. Nagy et al. have also recently reported that
a p120- and b-catenin target gene, PPARδ, regulates
gastric epithelial proliferation via activation of cyclin
E. These are potentially important mechanisms
through which H. pylori may lower the threshold for
developing gastric cancer [98].

Conclusions
The gastric epithelium is primed to secrete effector mole-
cules that control gastric function, and the highly orga-
nized nature of gastric glands is essential for regulating
gastric integrity and maintaining a protective barrier
between harmful luminal contents and the underlying tis-
sue compartments. H. pylori has developed numerous
strategies to penetrate the gastric epithelial barrier by
altering the structure and function of the apical junc-
tional complex. The role of CagA in disrupting the apical
junction complex is divisive; however, the actions of
CagA are critical in a number of contexts. In addition to
CagA, H. pylori also utilizes other factors to modify the
gastric barrier. These include VacA, OipA, urease, and
the newly identified HtrA, in addition to disrupting the
gastric barrier through altering cell polarity. Future stu-
dies will provide further insight into understanding how
H. pylori factors and signaling pathways culminate in loss
of barrier function. These studies are of utmost impor-
tance as many gastric diseases including gastric cancer
may develop as a result of compromised barrier function.
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