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Abstract

PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini
of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal
transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently
emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-
mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in
the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction
networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes.

J

Introduction

Diverse biological activities are regulated through the
dynamic interactions of modular protein domains (e.g.,
WW, SH3, SH2, PH, and PDZ) and their corresponding
binding partners [1]. Elucidation of the specificity, selec-
tivity, and regulatory mechanisms involved in these pro-
tein-protein interactions can therefore provide important
insights into biological processes such as cell proliferation
and cell polarity [1,2].

PDZ domains are abundant protein-protein interaction
modules found in various species (Figure 1) [3-6]. In the
mouse genome, for example, 928 PDZ domains have been
recognized in 328 proteins, which exist in single or multi-
ple copies or in combination with other interaction mod-
ules (Figure 1) [7]. From the abundance and diversity of
PDZ domains in cells it is apparent that many cellular and
biological functions, especially those involving signal
transduction complexes, are affected by PDZ-mediated
interactions [7-20].

PDZ domains are small and often modular entities con-
sisting of 5 or 6 B-stranded and 2 or 3 a-helical structures
[21]. PDZ domains typically recognize the extreme C-ter-
mini of target proteins [22], but some also recognize the
internal sequence motif of target proteins through a sin-
gle binding site on the domains [23-25]. Structural analy-
sis of PDZ domains and PDZ-mediated interactions by
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NMR and X-ray crystallographic methods in conjunction
with computational methods has provided insights into
the specificity or promiscuity of PDZ protein-protein
interactions [26,27]. Proteomic methods, such as large
scale protein arrays [28-30] and peptide libraries [31-44],
have also been used to understand the binding properties
of PDZ protein-protein interactions at a genome-wide
level, which may provide clues about novel functions of
proteins of interest in various cells. PDZ-containing pro-
teins interact with many proteins within cells, so studying
the regulatory mechanisms of PDZ protein-protein inter-
actions, such as phosphorylation, autoinhibition, and
allostery, is also vital to understand their biology. This
review focuses on the advances made in the fields of
structural biology, proteomic applications, and regulatory
mechanisms of PDZ-mediated interactions.

Structural characteristics of PDZ domains

At present, more than 200 structures of PDZ domains -
either the PDZ domains alone, their complexes with
binding partners, or PDZ-PDZ dimers - have been deter-
mined by NMR and X-ray crystallography [26]. Small-
angle X-ray scattering (SAXS) in combination with NMR
has also been used to determine the structure of PDZ-
containing proteins [45]. These structural studies provide
detailed information on ligand recognition and selectivity
of PDZ-containing proteins at the molecular level. In this
section, we discuss the recent advances in understanding
the structural characteristics of isolated PDZ domains,
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Figure 1 Examples of PDZ domain-containing proteins. Proteins are indicated by black lines scaled to the length of the primary sequence of the

and PDZ domains in complexes with their binding part-
ners.

PDZ domains structures

Canonical PDZ domains

PDZ domains are usually 80-100 amino acid residues
long and adopt a similar topology: structural studies have
revealed that canonical PDZ domains are usually com-
posed of 6 B-strands (BA ~ BF), a short a-helix (aA) and a
long a-helix (aB) (Figure 2A) [21,46,47]. The canonical
PDZ family has a highly conserved fold, but secondary
structures vary in length [5,20,47-49]. The N- and C-ter-
mini of canonical PDZ domains are in proximity to each
other on the opposite side from the peptide-binding site
in a groove between the aB-helix and pB-strand struc-
tures (Figure 2A).

PDZ-like domains

Similar to canonical PDZ domains, the HtrA family,
including HtrA (or DegP), DegS, and DegQ, adopt a PDZ-
like fold consisting of 5 B-strands (p1-p5) capped by 2 a-
helices (a2 and a3) and also 2 short B-strands at the N
and C termini (BN and BC). The well-defined a-helix (a1)

is formed in the region between the 1 and 2 loop of the
PDZ-like domain (Figure 2B) [17,41].

Dimerization of PDZ domain

Although most PDZ domains that have been studied in
isolation are found to be monomers [5,20,47-49], some
form dimers [50-55]. Shank-1 PDZ and GRIP-1 PDZ6, for
example, form a homodimer via the conserved PB/BC
loop and N-terminal PA strands, which display an anti-
parallel orientation between the PA strands of the pro-
teins [50,51]. The formation of the PDZ dimer does not
affect the binding to its partner because the peptide-
binding sites of both PDZ domains remain open. How-
ever, the role of both PDZ dimerizations found in vitro
remains unclear, because there is no evidence that the full
length Shankl and GRIP1 proteins form functional dim-
ers in vivo.

A novel dimerization mode of PDZ domains has
recently been reported in NMR and X-ray crystallo-
graphic studies [52-55]. Two independent groups have
shown that the second PDZ domain (PDZ2) of the ZO
protein forms a dimer by extensive symmetrical domain
swapping of pB-strands (Figure 2C) [52-55]. The ZO-1-
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yellow oval. The structures were generated using the Pymol software.

Figure 2 Structures of PDZ, PDZ-like, PDZ-PDZ dimer, and tandem PDZ domains. (A) Ribbon diagram of DvI-1 PDZ (PDB code: 2KAW). (B) HtrA2
PDZ (PDB code: 1LCY). (C) ZO-1 PDZ2 (PDB code:2RCZ). (D) GRIP-1 PDZ1+2 (PDB code: 20T5). The binding site of each PDZ domain is shown by a

PDZ2 dimer largely maintains the canonical PDZ fold;
however, the N- and C-termini of ZO-1-PDZ2 are not
close to each other [52-55]. In the ZO-1-PDZ2 dimer, the
binding site opens to allow interaction with the target
protein [52-54]. In vivo, the presence of the ZO-1 dimer
or higher order oligomers was confirmed by the co-
immunoprecipitation of fluorescent-labeled ZO-1 (GFP-
Z0-1) and endogenous ZO-1 [52].

Tandem PDZ domains

Although isolated PDZ domains usually fold into a well-
defined native structure, recent studies have shown that
some PDZ domains need other PDZ domains that are
connected to them in a tandem arrangement in order to
fold properly [56,57]. For example, the first and second
PDZ domains (PDZ12) of GRIP-1 proteins are connected
in this way (Figure 1). Structural studies have revealed
that the isolated PDZ1 of GRIP-1 is not well folded, but
that the PDZ12 tandem is (Figure 2D), indicating that the
folding of PDZ1 strictly depends on the covalent attach-
ment of PDZ2 [56]. Another example of a tandem PDZ
domain is the fourth and fifth PDZ domains (PDZ45 tan-
dem) of GRIP-1, which are required to interact with
GluR2/3 [57]. The solution structure of the PDZ45 tan-
dem shows that PDZ4 contains a deformed binding

groove, but that this deformed groove stabilizes the
structure of PDZ5.

Besides these examples, recent studies reported the
structures of tandem PDZ domains present in PSD-95
[58], human synthenin [59,60], and X11a [61], showing
that tandem PDZ domains play crucial roles in the forma-
tion of structural and functional supramodules [56-63].

The carboxylate-binding site of PDZ domains

PDZ domains have a single binding site in a groove
between the aB and BB structural elements with a highly
conserved carboxylate-binding loop (R/K-XXX-G-®-G-
@ motif, where X is any amino acid residue and @ is
hydrophobic residues) located before the BB strand
[4,31]. The first Gly residue in this motif is variable
among canonical PDZ domains, and can be replaced by a
Ser, Thr, or Phe residue (Figure 3A) [26]. The second and
the fourth residues are hydrophobic, such as Val, Ile, Leu,
or Phe (Figure 3A). The side chains of both of these resi-
dues create the hydrophobic binding pocket of canonical
PDZ domains [5].

Because this loop region of PDZ domain plays a key
role in ligand binding, the conformational properties of
amino acid residues in this region of multiple currently
deposited PDZ domain structures were analyzed. Inter-
estingly, the second residue in the loop region adopts the
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Figure 3 The amino acid residues in the carboxylate-binding loop regions of PDZ domains adopt a specific conformation. (A) Selected 'X-0-
G-0' motifs from known structures of PDZ domains, where X represents any amino acid residue and O represents hydrophobic amino acid residues.
(B) 4 Top boxes: Distribution of the (@W) angle of the amino acid residue at the specific position. Bottom: Ribbon diagram of the Dvl1 PDZ domain

(grey, PDB code: 2KAW); the X1-02-G3-04 motif is highlighted (stick).

a-helix conformation whereas the fourth residue adopts
the B-sheet conformation (Figure 3B). The carboxyl oxy-
gen atom of the second residue in the loop region forms a
hydrogen bond with a residue in the aA helix, thereby
stabilizing this short helix. The third Gly residue in the
loop region is fully conserved (Figure 3A) and adopts the
left-handed o-helical conformation in structures available
to date (Figure 3B), which may be important for deter-
mining the PDZ fold. These specific conformations for
each residue in the carboxylate-binding loop region allow

amide groups to serve as the H-bonding donors (Figure
3B).

As seen in canonical PDZ domains, PDZ-like domains
also have a single binding site located in the groove
between the 1 strand and the a3 helix structures. The
carboxylate-binding loop region [X1-®2-G3-®4 motif]
in PDZ-like domains is located before the p1 strand (Fig-
ure 2B), and the third Gly residue is highly conserved in
this loop region. The second and fourth residues in the
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loop regions are hydrophobic residues, as seen in canoni-
cal PDZ domains.

Conformational properties of peptides bound to
PDZ domains

C-terminal regions of proteins interacting with PDZ
domains

To date, approximately 20 structures of PDZ domains in
complex with their binding peptides, mostly complexes
with free COOH-terminal peptides, have been reported
[26]. The binding peptide forms an additional p strand in
the groove between the B strand and the aB-helix struc-
ture of the PDZ domain [4]. As the conformational prop-
erties of the bound PDZ ligands might be useful to
understand, the binding specificity of PDZ domains, the
backbone (@,y) dihedral angles for each position of the
amino acid residues were investigated (Figure 4A). Bound
peptides that form complex structures with PDZ domains
have 4 or 9 residues. The (¢,y) angles at the p(0) site of
the PDZ ligand (i.e. the most C-terminal residue) are ran-
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domly scattered in the Ramachandran plot and do not
show preference for a specific conformation. The (@)
angles at p(-1), p(-2), and p(-3) sites are located on the
strand (Bg) or extended (g) conformation regions [64].
Interestingly, for the complex structure of the PDZ
domain of Dishevelled with the Dapper peptide, the p(-3)
residue adopts the right a-helix (ay) conformation, which
contrasts what is seen in other PDZ-mediated interac-
tions (see also Figure 4B) [65]. Positions -4 and -5 of
amino acid residues adopt the -strand or extended con-
formation, but some positions have different conforma-
tions. Taken together, the difference in conformational
properties of each residue at the different positions may
explain the binding specificity of PDZ domains (Figure
4A).

Internal sequence of target proteins

Although the binding of many PDZ-containing proteins
occurs by recognition of the extreme C-terminus of tar-
get proteins [31], some PDZ domains can also bind to
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Figure 4 Each residue in the PDZ-bound ligand adopts a specific conformation. (A) Distribution of (@) angles of each residue of the PDZ-bound
ligand. Dataset were from PDBsum http://www.ebi.ac.uk/pdbsum/. (B) The orientation of each residue in the side chain of the PDZ ligand in case of
a free carboxy-terminal peptide and the internal sequence from PSD-95/nNOS and Par-6/Pals1 complex [65,69,185,186].
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internal sequences of target proteins [48,49,66-70]. The
most well-characterized example of this nature is the
interaction between the PDZ domain of the syntrophin
(or PSD-95) protein with the internal B-hairpin finger
structure of the nNOS protein (Figure 4B) [66-68]. This
nNOS B-hairpin pockets in the binding site of syntrophin
(or PSD-95) protein, which mimics a normal peptide
ligand, but the extreme C-terminus is replaced with a
sharp B-turn [68]. Another example is the interaction of
the internal ligand of the Palsl protein with the Par-6
PDZ domain (Figure 4B) [69]. Prehoda and coworkers
determined the three-dimensional structure of the Par-6
PDZ domain in complex with the Sdt/Pals1-derived pep-
tide Ac-Y-8P7K-6H-5R-4E-3M-2A-1VOD+1C+2P+3CONH, by
X-ray crystallography. The Palsl internal ligand adopts
the extended conformation, which is comparable to that
seen in the nNOS-PSD-95 internal interaction [66,69].
The binding of the Pals1 internal ligand induces a confor-
mational change in the carboxylate-binding loop of the
PDZ domain of Par-6, which may result from the forma-
tion of salt bridges between the Asp(+1) residue from the
internal ligand and a Lys residue from the carboxylate-
binding loop, as indicated by alanine scanning mutagene-
sis experiments [69]. Besides these 2 interactions with
internal peptides, several others have also been reported:
binding of the PDZ of Dvl with the internal KTxxx(W/I)
motif of Frizzled and Idax proteins [48,70], the PDZ bind-
ing of nNOS to the internal -[D/E]-x-F-[D/E]- motif of
Vacl4, and the PDZ interaction of HtrA1/2/3 with inter-
nal sequences of misfolded polypeptides [41]. Whether
the internal sequences of target proteins adopt a specific
conformation in the bound state remains to be deter-
mined.

Interactions among residues in the PDZ - peptide
complex

As the C-terminal region of PDZ-binding proteins forms
an additional B-strand in the groove between the BB-
strand and the aB-helix structure of the PDZ domain [4],
each residue in the PDZ ligand can interact with specific
residues in the binding pocket of the PDZ domain (Figure
4B). This section summarizes the structural characteris-
tics of these specific interactions among the side chains of
PDZ ligands and the binding surfaces of PDZ domains
(Figure 4B).

Structural analyses have shown that the p(0) side chain
of the PDZ ligand interacts with pB-1, aB-8, and aB-5
side chains of the PDZ domain [32,36,37,41,42,71-73].
The numbers used here in combination with the struc-
tural elements represent the position of the relevant
amino acid residue on a specific secondary structure ele-
ment: for example, PB-1 is the first residue of the pB
structure. The preference of the p(0) residue is likely
related to the size of the BB-1 side chain [36]. If BB-1 is a

Page 6 of 18

Phe residue, the p(0) site of the PDZ ligand prefers a Val
residue over a bulky residue; on the other hand, if BB-1 is
a Leu/Ile residue, the p(0) site of the PDZ ligand prefers
bulky residues [73].

The p(-1) side chain of the PDZ ligand may interact
with the $B-2 and BC-5 residues or a residue of the BC-
aA loop regions, or both, within the PDZ domain. As the
p(-1) residue of the PDZ ligand is exposed to the solvent,
the residue was initially thought to have no preference.
Accumulating evidence, however, shows that some PDZ
domains favor specific residues at the p(-1) position
[36,41,42,73-75]. For example, the Erbin and Dishevelled
PDZ domains prefer a Trp residue at p(-1) [36,46]. To
understand why the Trp(-1) residue is preferred in the
binding of Dvl-1 PDZ to the VWV tripeptide, its complex
structure was determined by NMR spectroscopy, fol-
lowed by molecular dynamic simulation and assessment
of the molecular mechanics with the Poisson-Boltzmann
surface area method [46]. The results showed that hydro-
phobic interactions contribute to the increased binding
affinity of the Dvl PDZ/the VWV tripeptide [46]. For the
preferred Trp of the p(-1) site for the Erbin PDZ ligand,
Beuming et al. (2009) predicted a favorable release of
high-energy water molecules into bulk [76]. Despite the
preference for the W(-1) residue in some PDZ ligands,
PDZ domains with Cys residue at PB-2 position likely
favor the Cys residue at the p(-1) site in the PDZ ligand
[77]. For example, the N-terminal PDZ domain of InaD
forms the complex with the C-terminus of NorpA
through disulfide bond formation between the Cys resi-
due at p(-1) site in PDZ-ligand and the Cys residue at B-
2 position of the PDZ domain [77]. Kimple et al. (2001)
proposed that some PDZ domains may also form an
intermolecular disulfide bond between a PDZ domain
and its binding ligand [77].

The p(-2) residue in the PDZ ligand can interact with
aB-1 and aB-5 residues on the PDZ domain, which plays
an important to role in determining the binding specific-
ity of PDZ-mediated interactions [4,31,73]. The prefer-
ence for the p(-2) residue is likely related to the
physicochemical properties of aB-1 and aB-5 residues. It
has been suggested, for example, that the preference for
the Ser or Thr residue at the p(-2) site in the PDZ ligand
is due to hydrogen bond formation with the side chain of
the His residue at aB-1 [78]. The hydrophobic properties
of aB-5 residue may explain the preference of the Thr res-
idue over the Ser residue at the p(-2) site in the PDZ
ligand [39,79].

For the p(-3) residue in PDZ ligands, it appears to be
difficult to define strict parameters for the interaction. It
can interact with the pB-4 for short ligand side chains or
the BB-5 residue for long ligand side chains [36,41,80].
However, the p(-3) residue of the PDZ ligand, dapper, is
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in proximity to the aB-1 residue (Asn) on the Dvl PDZ
domain (Figure 4B) [65].

Characterization of PDZ-mediated interactions
with advanced tools

While the complex structures of PDZ domains and their
ligands by NMR and X-ray provide molecular details of
PDZ-mediated interactions, advanced tools such as pro-
teomics and protein arrays have been developed to char-
acterize the PDZ-mediated interaction network
proteome-wide. This section summarizes techniques
such as yeast two-hybrid (Y2H), coimmunoprecipitation,
protein microarray, and peptide libraries and their appli-
cations in studying the PDZ-mediated interactions
[79,81-87]. We summarize the classification of PDZ
domains investigated by peptide library approaches and
suggest a need to deposit the accumulated information
obtained by these advanced tools into publicly available
databases to accelerate the identification of novel PDZ-
mediated interactions.

Techniques for studying the PDZ-mediated interactions
Y2H approach

The Y2H approach is widely used to identify protein-pro-
tein interactions [79,81-86]. In a study of PDZ-mediated
binding events by Lee and coworkers, the C-terminal
fragment of target proteins was subcloned into a bait vec-
tor containing a DNA-binding domain, and the PDZ
domains subcloned into the matching prey vector con-
taining the corresponding activation domain [84]. Both
partial fusion proteins were expressed in the same yeast
cell and their binding reconstituted a functional tran-
scription activator, which led to transcriptional activation
of a reporter gene. Gisler et al. (2008) developed a modi-
fied membrane yeast two-hybrid (MYTH) system to test
interactions between full-length integral membrane pro-
teins and their cognate PDZ-interacting partners [85].
However, Y2H approaches have a high rate of false posi-
tives and false negatives, and therefore their results need
to be interpreted with caution [82,83].
Co-immunoprecipitation (co-IP) approach

In co-IP, it is attempted to identify a specific protein as
interaction partner of another in cellular or tissue protein
extracts [84]. The protein complex is immobilized via a
specific antibody on protein A or protein G Sepharose
beads and unbound proteins are removed by a series of
washes. The protein complex is then eluted from the
beads and analyzed by SDS-PAGE followed by Western
blotting with specific antibodies for the bait and prey
[84,88]. Co-IP is usually used as a complementary assay
to confirm the direct interaction identified by other bio-
physical methods [81,84,86,89-92]. Gee et al. (2009), for
example, identified a direct interaction of the C-terminus
of the vasoactive intestinal polypeptide (VIP) type -1
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receptor (VPAC1) and the PDZ domain of the synaptic
scaffolding molecule (S-SCAM) by an Y2H screen, which
was then confirmed by co-IP in HEK293 mammalian cells
and human pancreatic and colonic tissues [92].

PDZ domain arrays

PDZ domain arrays have been developed by several
groups [28-30]. Hall and coworkers developed a pro-
teomic array of 96 putative class [ PDZ domains derived
from cytoplasmic proteins [28]. These PDZ domains
were expressed as His- and S-tagged fusion proteins [93],
purified, and spotted onto 96-grid nylon membranes [28].
Tymianski and coworkers cloned all publicly known
human PDZ domains (more than 160 constructs) into
expression vectors and produced GST-PDZ fusion pro-
teins, which were arrayed into 96-well plates [94].

Because approximately 20% of GPCR proteins (includ-
ing ionic channels, ionotropic receptors, and single trans-
membrane proteins) in the human genome have a PDZ-
binding motif, PDZ domain arrays have been repeatedly
used to identify the binding partners of GPCR proteins
[28-30]. For example, Hall and coworkers demonstrated
in this way that the C-termini of GPCR proteins such as
P2Y1R, mGluR5, and B1AR are binding partners for sev-
eral PDZ domains [28-30]. These PDZ protein-protein
interactions were subsequently confirmed by coimmuno-
precipitation and immunofluorescence co-localization
studies [28-30].

PDZ domain arrays also have diagnostic applications
and can be used to develop biomarkers for detecting viral
infections. For example, in a large-scale sequencing anal-
ysis of avian influenza viruses (AIVs), Naeve and cowork-
ers found that the multifunctional NS1 protein has a
PDZ-binding motif at the last C-terminal sequence [95].
By using commercial PDZ domain arrays containing 123
PDZ domains derived from the human genome, they
showed that the full-length avian NS1 protein binds to 30
different human PDZ domains, whereas the human NS1
protein binds very weakly or not at all [95]. These results
indicate that avian NS1 proteins, not human NS1 pro-
teins, bind to and inhibit many PDZ interactions. Lamb
and coworkers verified the importance of these PDZ-
mediated interactions in a mouse model [96]. A company
has recently developed a rapid antigen assay test to
detect the avian influenza virus in humans using its own

PDZ  array  http://www.cdc.gov/EID/content/14/3/

ICEID2008.pdf.
Although most PDZ domain arrays developed to date

provide qualitative information on PDZ protein-protein
interactions, PDZ domain arrays and fluorescence polar-
ization can be combined to generate quantitative infor-
mation of PDZ-mediated interactions. This information
can be used to further elucidate the specific binding
properties of PDZ domains [97]. For example, MacBeath
and coworkers generated microarrays containing 157
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mouse PDZ domains [97]. These PDZ domains were
arrayed onto aldehyde-presenting flat glass slides, and
multiple identical microarrays were printed in a 96-well
plate-like format [97,98]. They also synthesized and puri-
fied 217 fluorescently labeled peptides derived from the
C-terminal residues of mouse proteins. All possible inter-
actions of these 157 PDZ domains with the 217 genome-
encoded peptides were then examined by the fluores-
cence polarization assay [97]. The PDZ domains microar-
rays identified interactions of moderate to high affinity
(Kp < 10 pM) in a high-throughput format, with a moder-
ate false-positive rate of 19% and an even lower false-neg-
ative rate of 14% [98]. The results were subsequently used
to build a model with a position-specific scoring matrix
(PSSM) that predicts the selectivity of the PDZ domain
[97,99]. Using this model, MacBeath and coworkers
screened 31,302 peptide sequences corresponding to the
C-termini of all translated open reading frames in the
mouse genome and found no less than 18,149 PDZ-pep-
tide interactions. This suggests that obtaining compre-
hensive information on PDZ-peptide interactions may be
very helpful in supporting future biological investigations
of target protein functions [97,99].

Peptide library approaches: Phage display and SPOT
synthesis

Because PDZ domains recognize only short linear motifs
in their target proteins, peptide library approaches are
being used to define the binding specificity of PDZ
domains, to confirm known PDZ interactions, to opti-
mize the PDZ-binding ligands, and to find putative PDZ-
binding partners [31-44,100].

Phage display is a high-throughput approach in which
libraries of more than 1011 random peptides or proteins
are expressed on the surfaces of phage particles, which
harbor short randomised DNA stretches that encode for
the oligopeptide to be displayed for studying PDZ-ligand
interactions [32]. After typically several rounds of 'pan-
ning' the binding peptide candidates are identified by iso-
lating single phages and sequencing their DNA [101].
Given that most PDZ domains recognize the free C-ter-
mini tail of target proteins, C-terminally displayed pep-
tides have been developed [31,32,39,40,73,102]. Songyang
et al. (1997) examined peptide-binding specificities of 9
PDZ domains by using the oriented peptide library to elu-
cidate relative preferences for certain amino acids at a
given position of PDZ-binding ligands [31]. Kurakin et al.
(2002) developed the target-assisted iterative screening
(TAIS) method, a simple and rapid 2-step procedure for
in vitro affinity selection of specific binding partners from
molecules with enormous molecular diversities to the
target molecule of interest [34]. This method has been
applied to a commercial phage-displayed cDNA library
with a PDZ domain as a target to investigate the selectiv-
ity and promiscuity of the interactions [39]. Tonikian et
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al. (2008) used C-terminal phage-displayed random pep-
tide libraries containing greater than 10 billion random
peptides to analyze the binding specificities of 145 PDZ
domains (from 57 C. elegans and 88 human proteins)
[73].

SPOT synthesis allows the parallel synthesis and
screening of thousands of cellulose membrane-bound
peptides, and has been applied to study PDZ-mediated
interactions [44,103]. For example, Wiedemann et al.
(2004) generated a peptide library comprising 6223 C-
termini of human proteins by SPOT synthesis of inverted
peptides to obtain an overview of the space of target
sequences for 3 PDZ domains from AF6, ERBIN, and
SNA1 proteins, respectively [103]. On the basis of the
ligand preferences detected for these PDZ domains, they
designed focused peptide libraries (profile libraries) and
quantified the binding affinity contributions of the 4 C-
terminal ligand residues. The authors studied the binding
specificities of PDZ domains and established the relation-
ship between the C-terminal ligand sequences and the
corresponding K, values. Finally, they predicted putative
PDZ-binding partners on the basis of the SWISS-PROT
database.

Classification of PDZ domains

Recent studies on proteomic applications that use protein
arrays and peptide libraries have generated a wealth of
information on protein-protein (or peptide) interactions
(PPIs) [71,72,93-95]. In addition, the existing classifica-
tion of PDZ domains - (1) class I domains, which recog-
nize the motif S/T-X-®; (2) class II domains, which
recognize the motif ®-X-®; and (3) class III domains,
which recognize the motif D/E-X-® as their preferred C-
terminal motif, where @ represents a hydrophobic resi-
due - has been challenged because of the importance of
other upstream positions within the PDZ ligand, such as -
3 or -4 position (position 0 referring to the C-terminal
residue), to the binding specificity of target proteins
[36,42,71,73,74,104]. By analyzing a total of 72 PDZ
domains corresponding to 2,998 ligands, Tonikian et al.
(2008) suggested the 16 classes of PDZ domains, which
are defined by the following C-terminal motifs: 1a (¢-[K/
R]-X-S-D-V); 1b (Q-[R/K]-E-T-[S/T/R/K]-9); 1c (¢-¢-E-
T-X-L); 1d (E-T-X-V); 1e (T-W-y); 1f (Q-Q-T-W-y); 1g
(@-90-9-[T/S]-[T/S]-Q-y]; 2a (F-D-Q-Q-C); 2b(W-X-Q-
D-y); 2¢ (W-Q-¢-D-y); 2d (¢-9-X-[E/D]-9-¢-¢); 2e (¢-¢-
¢-0); 2f ((D/EJ-¢-Q-¢); 3a (WX[S/T]-D-W-y); 4a (Q-¢-
G-W-F); ¢, hydrophobic (V, I, L, F, W, Y, M); ), aromatic
(E W, Y); y, aliphatic (V, I, L, and M); and X, nonspecific
[73]. They also suggested that their specific map for the
PDZ domain family will be able to predict natural protein
interactions [73]. Further studies with independent meth-
ods would be necessary to verify their classification,
because the 72 PDZ domains investigated by Tonikian et
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al. (2008) may not be enough to represent the whole PDZ
'domainome’.

Bioinformatics and other methods for finding putative
PDZ-binding partners

Studies with PDZ microarrays and peptide libraries have
focused on generating information on PDZ-mediated
interactions, generating a key resource to investigate bio-
logical networks and signaling pathways within cells [28-
44,97-99]. This information needs to be comprehensively
deposited in publicly available repositories, such as
iSPOT, DOMINO, and PDZBase [105-108], in order to
maximally accelerate the discovery of novel PDZ-medi-
ated interactions in cells. PDZBase is a unique database
that contains information extracted from the literature of
all known PDZ domain-mediated protein-protein inter-
actions obtained from in vivo (coimmunoprecipitation)
or in vitro experiments (GST-fusion or related pull-down
experiments) [108].

However, the information on interactions derived from
high-throughput methods should be interpreted with
caution and verified by other independent methods, such
as Y2H and co-IP. For example, MacBeath and coworkers
predicted 18,149 PDZ-peptide interactions from PDZ
microarrays [97,98]. Among them, 710 proteins were pro-
posed to be binding partners for the Dvl PDZ domain
[97]. Because Dvl proteins (Dvll, Dvl2, and Dv13 in mam-
mals) play diverse roles in Wnt signaling [109], identifica-
tion of their binding partners is key to understanding
their biological functions. Although we cannot exclude
the possibility that unexpected Dvl-binding proteins may
exist in the predicted data [97], no known Dvl PDZ-bind-
ing partners such as Dapper [65] and Daple [110] have
been found in this data set, highlighting the importance
of further verification of the proposed binding partners
by other methods. Furthermore, there is a discrepancy
between the list of predicted Dvl PDZ binding partners
reported by Tonikian et al. (2008) who were using phage-
displayed oriented peptide libraries and that by Stiffler ez
al. (2007) resulting from the use of PDZ domain microar-
rays [97]. Ten potential binding partners of the Dvl2 PDZ
domain predicted by Tonikian et al. are not found in the
prediction list of Stiffler et al. In addition, because neither
study considered the expression profiles and subcellular
localizations of the proposed PDZ-binding partners, the
number of real binding candidates for a specific protein is
expected to be significantly lower than that reported.
siRNA experiments are needed to verify putative interac-
tions in vivo. Along these lines, Cui et al. (2007) con-
ducted a proteomic analysis of the interactions of
neuronal signaling proteins with human PDZ domains
(>6,500 interactions) using an ELISA-based assay [94].
They found that the Tat-NR2B9c peptide, which is a Tat
peptide consisting of the nine COOH terminal residues
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of the NR2B subunit, binds specifically to PSD-95 family
members (PSD-95, PSD-93, SAP97 and SAP102) and Tax
interaction protein 1 (TIP1). As they suppressed the Tat-
NR2B9c-binding proteins in primary murine neuron cul-
ture by RNA interference, remarkably, neurons lacking
PSD-95 or nNOS, but no other PDZ domains, exhibited
reduced excitotoxic vulnerability [94].

Taken together, optimal use of all the databases compil-
ing the interactions obtained by different methods will
reduce the time and expense of finding a specific PDZ-
binding partner for further studies at a genome-wide
level, and will also aid its functional characterization
[24,73,111].

Regulation of PDZ-mediated interactions

As PDZ domains interact with many proteins, under-
standing the regulatory mechanisms of PDZ-mediated
interactions is important to gain insight into biological
processes. Posttranslational modification, autoinhibition,
and allosteric interaction have been proposed to regulate
PDZ-mediated interactions.

Phosphorylation within the PDZ ligand modulates PDZ
protein-protein interactions

Phosphorylation of Ser, Thr, or Tyr within the PDZ ligand
can modulate PDZ-mediated interactions (Table 1 and
Figure 5). For example, the interaction between the NR2B
subunit of the NMDA receptor with PSD-95 is negatively
modulated by phosphorylation (Figure 5A). The PDZ
ligand (LSSIESDV o) of NR2B at the p(-2) site is phos-
phorylated by CK2 in vivo (although S(-2) does not match
the substrate consensus motif of CK2), which disrupts its
interaction with PSD-95 and decreases the surface
expression of NR2B in neurons [112]. The authors also
reported that CK2 colocalizes with NMDAR in dendrites
and at some excitatory synapses [112,113]. Kim and
coworkers showed that phosphorylation by PKA at the
p(-2) site within the PDZ ligand (ANRRTTPV qny) of
stargazin, which is a transmembrane AMPA receptor reg-
ulatory protein, abrogates its binding to PSD-95 PDZ1
domains and thereby regulates synaptic AMPAR function
[114,115]. The disruption of PDZ-mediated interactions
by phosphorylation can be rationalized by the elimination
of a possible hydrogen bond donor sidechain; the side
chain of an unmodified Ser or Thr residue at the p(-2) can
form a hydrogen bond with the N-3 nitrogen of the His
residue at position aB-1 for the PDZ class I domain, and
phosphorylation of the PDZ ligand in this position
destroys this possibility, resulting a in loss of PDZ-based
interactions [78].

Besides phosphorylation of the p(-2) site within the
PDZ ligand, other positions in the ligand can also be
phosphorylated [55,86,116,117]. The Ser residue at p(-4)
site in the C-terminal PDZ ligand (YNYGIESVKICOOH)
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Table 1: Phosphorylation of the PDZ ligand by serine or threonine kinase modulates PDZ protein-protein interactions

PDZ-containing proteins Binding partner(s) PDZ liganda Kinase(s) Ref.
PSD-95 Kir2.3 ISYRREESRI PKA (RR/KXS/T)P Cohen etal.[187]
PSD-95 Stargazin ANRRTTPV PKA (RR/KXS/T)P Choietal.[115]
Chetkovich etal. [114]
PSD-95/SAP102 NR2B subunit of NMDAR LSSIESDV CK2 (S/TXXE/D)P Chungetal. [112]
GRIP1 GluR2 subunit of AMPAR YNYGIESVKI PKC (RXXS/TXR/K)P Matsuda et al. [116]
Chungetal.[117]
PSD-95 NR2C subunit of NMDAR RRVSSLESEV PKA/PKC Chenetal.[127]
PSD-95/SAP97 LRP4 ERKLSSESQV CaMKII (RXXS/T) b Tianetal. [119]

aPhosphorylation sites of PDZ ligands are underlined and in bold.

bKinase consensus phosphorylation motif (where X indicates any amino acid) [188,189].

of the AMPA receptor GluR2 subunit is phosphorylated
by PKC in vitro and in vivo [116,117]. Coimmunoprecipi-
tation and in vivo binding studies have shown that phos-
phorylation significantly decreases binding of GluR2 to
the PDZ domain of GRIP1/2 but not of PICK1. Lin and
Huganir reported that phosphorylation of GluR2 and
binding to PICK1 dynamically regulate GluR2 recycling
[118]. Tian et al. (2006) showed that CaMKII phosphory-
lates the C-terminal cytoplasmic region of LRP4 at Ser-
1900, p(-5) site, of the C-terminal tail (ERKLSSESQV-
COOH), which suppresses the interaction of the protein
with PSD-95 and SAP97 [119]. The reason for the
decrease in PDZ binding affinity by phosphorylation at
the -4 and -5 positions of residues in the PDZ ligand
remains unclear. Zhang and coworkers have shown by
structural and biochemical studies that domain-swapped
dimerization of the ZO-1 PDZ2 domain plays a crucial
role in the interaction with the C-terminus of the
connexin43 protein (referred to as Cx43 peptide, ASSR-
PRPDDLEI) [55]; this interaction is regulated by phos-
phorylation of Ser residues at the -9 and -10 positions in
the PDZ ligand of Cx43. These Ser residues are substrates
for the kinases Akt and PKC [120-125]. NMR studies sug-
gest that the phosphorylation of the Ser residues at p(-9)
and p(-10) sites may interfere with the charge-charge
interaction network formed by Cx43 and the residues at
the dimer interface of ZO-1 PDZ2 [55].

To examine the effect of ligand position-dependent
phosphorylation of the PDZ ligand, Volkmer and cowork-
ers developed a modified SPOT synthesis technique that
generated 3 arrays, each containing the 100 PDZ-binding
sequences and also all possible phosphorylated variants

for the 3 PDZ domains from AF-6, ERBIN, and SNA-1
proteins [38]. The interactions of 344 peptides for AF-6
PDZ, 319 peptides for ERBIN PDZ, and 355 peptides for
the SNA-1 (a-1-syntrophin) PDZ domains showed that
phosphorylation of the PDZ ligand at p(-2) (<50% resid-
ual binding activity [rba]) and at p(-1) (~50% rba) signifi-
cantly inhibited PDZ-mediated interactions;
phosphorylation at p(-4), (-7), and (-8) only slightly
affected the interactions (~80% rba), depending on the
PDZ domain; and phosphorylation at p(-3), (-5), (-6), (-9),
or (-10) had little or no influence on the interactions
(>80% rba). Although the PDZ domain of AF-6 is recog-
nized as a class II PDZ domain, phosphorylation at p(-2)
site disrupts the interaction between AF-6 PDZ and the
C-terminal ligand (STEV) of BCR (~30% rba). Data on
the phosphorylation sites of PDZ ligands and the roles of
phosphorylations of the PDZ ligands will be useful to elu-
cidate the regulatory mechanism of PDZ-mediated inter-
actions, even if the kinases that phosphorylate the PDZ
ligands remain unknown.

While many studies have reported that phosphoryla-
tion at the C-terminus of proteins negatively modulates
PDZ interactions, others have shown that phosphoryla-
tion can also promote PDZ interactions [86,126]. Inter-
estingly, a study by Roche and coworkers documented
that phosphorylation of a PDZ-binding motif did not
affect PDZ interactions: phosphorylation by PKA or PKC
of the p(-6) site within the C-terminus of the NR2C sub-
unit of NMDAR did not change the binding of the PSD-
95 PDZ3 or the surface expression of NR1/NR2C NMDA
receptors [127]. Surprisingly, a phosphomimetic muta-
tion accelerated channel kinetics, suggesting that phos-
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Figure 5 Posttranslational modifications on the PDZ ligands or PDZ domains modulate PDZ protein-protein interactions. (A) Phosphoryla-
tion of the PDZ ligand or PDZ domain inhibits PDZ interactions. The cross represents a reduced or abolished interaction. (B) Formation of intramolec-
ular disulfide bond (symbol, 'ox’) in the PDZ domain prevents binding of the other binding partner. (C, D) Phosphorylation or competitive binding

phorylation alters the function of NMDA receptor
channels. These results suggest that phosphorylation of
the PDZ binding motif of a target protein might not affect
association with the PDZ domain but can still play a role
in the functioning of its target protein.

Disulfide bond formation blocks PDZ protein-protein
interactions

Although phosphorylation is important in regulating
PDZ protein-protein interactions, intramolecular disul-
fide bond formation in PDZ domains can also modulate
binding [128,129]. For example, the PDZ5 domain of
InaD, a multiple PDZ domain-containing protein in pho-
toreceptor cells of the fruit fly (Figure 1), exists in a
redox-dependent equilibrium between 2 conformations:
the reduced form, which is similar to the structure of
other PDZ domains, and the oxidized form, in which the
ligand binding site is distorted through formation of a
strong intramolecular disulfide bond between 2 cysteines

situated in the PC strand and the aB helix (Figure 5B)
[128,129]. This provides the first evidence that disulfide
bond formation is able to change the conformation of the
PDZ domain and to regulate its function.

Phosphorylation on the PDZ domain itself negatively
modulates PDZ interactions

Several studies have reported that phosphorylation on
the PDZ domain itself may also disrupt PDZ protein-pro-
tein interactions (Figure 5A and 5C). For example, Luca
and coworkers found that activation of the NMDA recep-
tor induces a CaMKII-dependent phosphorylation of
SAP-97 or PSD-95 [130]. The protein SAP-97 is directly
associated with NR2A protein through its PDZ1 domain,
and phosphorylation of Ser-232 in SAP-97 by CaMKII
disrupts NR2A interaction both in vitro and in vivo. The
authors also identified a CaMKII-dependent phosphory-
lation on the PDZ domain of PSD-95 [130]. CaMKII
phosphorylation of Ser-73 of PSD-95 causes NR2A disso-
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ciation from PSD-95, but does not interfere with the
binding of NR2B to PSD-95 [130]. This phosphorylation
of PSD-95 negatively regulates spine growth and synaptic
plasticity [131]. Remarkably, Ser-232 in the PDZ1 domain
of SAP-97 and Ser-73 in PDZ1 domain of PSD-95 are
located in the aB-helix structure, which is the binding site
of the PDZ domain. These results suggest that phospho-
rylation at a Ser or Thr residue of the binding sites of PDZ
domains plays an important role in regulating PDZ-medi-
ated interactions.

Another example is the phosphorylation site (Ser-77) of
the first PDZ domain (PDZ1) of NHERF-1, a signaling
adaptor protein containing 2 PDZ domains at the N-ter-
minus and an ezrin-radixin-moesin (ERM) domain-bind-
ing (EB) region at the C-terminus [132,133]. The
phosphorylation of Ser-77, located on the aB-helix on the
PDZ domain, by protein kinase C (PKC) attenuates its
binding to physiological targets such as the 3,-adrenergic
receptor and sodium-phosphate cotransporter type Ila
(Figure 5C) [133,134]. The phosphorylation at Ser-162 of
the second PDZ (PDZ2) domain in NHERF-1 has also
been reported [135]. Raghuram et al. (2003) showed that
this phosphorylation lowers the PDZs affinity for the
CFTR C terminus and disrupts the bivalent PDZ domain
interaction of NHERF-1 (Figure 5C) [135].

Autoinhibited conformation of PDZ-containing proteins
Some PDZ-containing proteins have a PDZ-binding
motif at their C-terminal tail. The binding site of the PDZ
domain in these proteins can be occupied by their own C-
terminal sequences, thereby inhibiting the binding of the
PDZ ligand [45,61,136-141]. Here, we discuss three PDZ-
containing proteins that adopt the auto-inhibitory con-
formation.

NHERF-1

Two independent groups have reported that the C-termi-
nal tail of the NHERF-1 protein binds to its own PDZ2
domain (Figure 5C) [45,136]. Data from solution SAXS
show that the C-terminal EB region in NHERF-1 folds
back to PDZ2 [136], which is supported by recent NMR
and circular dichroism (CD) studies showing the pres-
ence of specific intramolecular interactions between
PDZ2 and the C-terminal EB regions [139]. Remarkably,
the last residues in the C-terminus of NHERF-1 adopt an
a-helix conformation when bound to PDZ2, which is
comparable to an extended conformation of a typically
bound PDZ ligand [138,139] and this a-helical conforma-
tion of the EB region is accommodated in the peptide
binding pocket of PDZ2. GST pull-down experiments
and surface plasmon resonance (SPR) experiments indi-
cate that the intramolecular interactions between PDZ2
and the EB region compete with the binding of extrinsic
ligands [45,139]. In addition, studies on the effect of
phosphorylation on the autoinhibitory conformation of
NHERE-1 by solution SAXS and binding assays suggest
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that this conformation could be disrupted by protein
kinase C (PKC) phosphorylation at Ser-339 and Ser-340
in the C-terminal domain of NHERF-1. In line with this,
the PKC phosphorylation-mimicking mutant
NHERF(S339D/S340D) displays a higher binding affinity
for its extrinsic ligand C-CFTR than wild-type NHERF-1
does [136]. The autoinhibited conformation of NHERF-1
can also be regulated by the binding of ezrin (Figure 5C).
Li et al. (2009) used small-angle neutron scattering
(SANS) to demonstrate that the C-terminal EB region
binds to ezrin, which induces conformational changes in
two region of NHERF-1: the region linking PDZ2 and the
C-terminal EB region and also that linking the PDZ1 and
PDZ2 domains [140]. The authors suggest that this long-
range interdomain conformation in NHERF1 bound to
ezrin increases the binding capabilities of both PDZ
domains [140].

The X11a protein, involved in regulating neuronal sig-
naling, trafficking and plasticity[142], contains a central
PTB domain and 2 C-terminal PDZ domains (PDZ1 and
PDZ2 arranged in tandem). Zhang and coworkers found
that the C-terminal tail of X11a folds back and binds to
the first PDZ domain, suggesting that the binding site of
PDZ1 is closed (Figure 5D) [61]. The authors hypothesize
that phosphorylation on the C-terminal tail of X1la
might re-open the binding site of the PDZ1 domain. To
test this hypothesis, they made a phosphorylation mimic
peptide wherein the highly conserved Tyr(-1) residue was
substituted with the Glu(-1) residue at the C-terminal tail
of X11a. Interestingly, this mutant peptide did not bind to
the PDZ1 domain but did bind to the PDZ2 domain of
X11a, suggesting that phosphorylation might lead to con-
formational changes in the autoinhibited PDZ-containing
protein and also changes in the binding selectivity of PDZ
domains in X11la. However, the tyrosine kinase driving
this phosphorylation remains to be determined (Figure
5D).

Tamalin, which is also called the GRP1-associated pro-
tein [143], contains an N-terminal alanine-rich region, a
central PDZ domain, and a C-terminal Leu-zipper
domain (Figure 1) [144-146]. Sugi et al. (2007) have
reported the crystal structure of the autoinhibitory PDZ
domain of tamalin [141]. In the absence of mGIluR pro-
tein, tamalin self-assembles into an autoinhibited confor-
mation through its PDZ domain and its C-terminal PDZ
ligand. The C-terminus of mGluR protein can competi-
tively bind to the PDZ domain of tamalin at a high con-
centration, thereby disrupting weak inhibitory
interactions, suggesting that the PDZ domain of tamalin
switches between the trafficking-inhibited and -active
forms, depending on the association with mGluR [141].

Allosteric regulation of PDZ-mediated protein interactions
Recent studies provide evidence that protein-protein
interactions influence the changes in the time scale and
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amplitude of protein motion within a domain as well as
long-range coupled motions between protein domains
[20,40,140,147-149]. Thus, several studies have examined
the effect of allostery in PDZ-containing proteins
[20,40,140,147-150], and some have shown that allosteric
interactions modulate the binding preferences of PDZ
domains [20,40]. Van den Berk et al. (2007) investigated
the binding preferences of the 5 PDZ domains in protein
tyrosine phosphatase PTP-BL by using a random C-ter-
minal peptide lambda phage display library [40]. They
found that the potential of PDZ2 to interact with class III-
type ligands can be modulated by the presence of PDZ1.
Structural studies have shown that the interaction of
PDZ1 with the surface area of PDZ2 opposite the binding
groove changes the binding specificity of PDZ2.

Furthermore, Li et al. (2009) reported that the binding
of ezrin to NHERF1 increases the binding capabilities of
both PDZ domains (Figure 5C) [140]. They further dem-
onstrated that NHERF1 undergoes significant conforma-
tional changes in the regions linking PDZ1 and PDZ2 and
also those linking PDZ2 and the C-terminal ezrin-bind-
ing domain when it forms a complex with ezrin. Together,
these results imply that the allosteric behavior in PDZ-
mediated protein-protein interactions plays an important
role in regulating these interactions.

Deregulation of PDZ-mediated interactions

Consistent with the observations that PDZ protein-pro-
tein interactions regulate diverse biological functions,
deregulation of PDZ interactions has been linked to vari-
ous diseases such as cancer [25,44,48,151-155]. There-
fore, small molecules, peptides, and peptidomimetics
that regulate specific PDZ-mediated interactions have
attracted significant attention because of their potential
to elicit therapeutic benefits [47,149,153,155-162]. Since
these compounds that target specific PDZ-mediated
interactions also have a wide-ranging potential as tools
for elucidating disease pathways, extensive studies are in
progress to discover more potent compounds that inhibit
PDZ-mediated interactions [47,152,156-165].

Conclusions

Experimental and theoretical studies have been exten-
sively conducted to understand PDZ-mediated interac-
tions. Many studies, however, have used a single PDZ
domain despite the presence of multiple copies of the
PDZ domain or combination of other interaction mod-
ules in proteins. Accumulating studies show, however,
that the binding preferences of tandem arrangements
within proteins with multiple PDZ domain differ from
those of proteins with a single PDZ domain [40,63,166-
168], implying that careful examination of the binding
properties of proteins containing tandem PDZ domains
or PDZ domains combined with other interaction mod-
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ule is required. In addition, the biological significance and
mechanistic details of multiple PDZ domain-containing
proteins still remain to be investigated.

Because PDZ-containing proteins may interact with
dozens of proteins, it is paramount to understand the reg-
ulatory mechanisms of PDZ protein-protein interactions
such as phosphorylation, disulfide bond formation, auto-
inhibition, competitive binding, and allostery. Phospho-
rylation of PDZ ligands is likely to be a major regulatory
mechanism, but the kinases catalyzing these phosphory-
lations are often yet to be characterized. We expect that
proteomics and bioinformatics can help to determine
these kinases and also the phosphorylation sites of the
proteins of interest [169-173]. Since other posttransla-
tional modification of proteins such as acetylation have
also been proposed [174], future studies also need to
focus on identifying and characterizing such unrecog-
nized modifications of PDZ-mediated interactions
[175,176]. An alternative regulatory mechanism that has
been proposed for the formation and stabilization of pro-
tein complexes is the binding of many PDZ domains to
phosphoinositide (PtdInsP)-containing lipid membranes
[177-183]. A complete understanding of the regulatory
mechanisms of PDZ-mediated interactions will enhance
our knowledge of many cellular and biological processes.
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