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Targeting the PDGF signaling pathway in tumor
treatment
Carl-Henrik Heldin
Abstract

Platelet-derived growth factor (PDGF) isoforms and PDGF receptors have important functions in the regulation of
growth and survival of certain cell types during embryonal development and e.g. tissue repair in the adult.
Overactivity of PDGF receptor signaling, by overexpression or mutational events, may drive tumor cell growth. In
addition, pericytes of the vasculature and fibroblasts and myofibroblasts of the stroma of solid tumors express PDGF
receptors, and PDGF stimulation of such cells promotes tumorigenesis. Inhibition of PDGF receptor signaling has
proven to useful for the treatment of patients with certain rare tumors. Whether treatment with PDGF/PDGF
receptor antagonists will be beneficial for more common malignancies is the subject for ongoing studies.
Introduction
Platelet-derived growth factor (PDGF) isoforms stimu-
late growth, survival and motility of mesenchymal cells
and certain other cell types [1,2]. They have important
functions during embryonal development and in the
control of tissue homeostasis in the adult. Overactivity
of PDGF signaling is associated with the development of
certain malignant diseases, as well as non-malignant dis-
eases characterized by excessive cell proliferation. The
involvement of PDGF overactivity in non-malignant dis-
eases has been discussed in a recent review [3]. The
present review will focus on the role of PDGF signaling
in tumor development, and on the use of PDGF antago-
nists in tumor treatment.
PDGF isoforms
The PDGF family consists of disulphide-bonded homo-
dimers of A-, B-, C- and D-polypeptide chains, and the
heterodimer PDGF-AB. The PDGF isoforms are synthe-
sized as precursor molecules. PDGF-AA, -AB and –BB
are cleaved already inside the producer cells in secretory
vesicles. In contrast, PDGF-CC and –DD are secreted as
inactive precursor molecules; N-terminal CUB-domains
need to be cleaved off to activate the growth factors.
This cleavage serves an important regulatory role, and is
performed by tissue-type plasminogen activator (tPA) or
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plasmin in the case of PDGF-CC, and by urokinase-type
PA (uPA) or matriptase (MT-Sp1) in the case of PDGF-
DD [4-7] (Figure 1).

Signaling via PDGF receptors
PDGF isoforms exert their cellular effects by binding to α-
and β-tyrosine kinase receptors (PDGFRα and PDGFRβ,
respectively). The two PDGF receptors are structurally
similar and consist of extracellular domains with five im-
munoglobulin (Ig) - like domains and intracellular parts
with kinase domains which contain characteristic inserts
of about 100 amino acid residues without homology to ki-
nases. Ligand binding occurs mainly to Ig-like domains 2
and 3, and causes dimerization of the receptors, which is
further stabilized by direct receptor-receptor interactions
involving Ig-like domain 4 [8,9]. The dimerization is a key
event in activation since it brings the intracellular parts of
the receptors close to each other promoting autophospho-
rylation in trans between the receptors. The PDGF poly-
peptide chains bind to the receptors with different
affinities. Thus, PDGF-AA, -AB, -BB and -CC induce αα
receptor homodimers, PDGF-BB and PDGF-DD ββ recep-
tor homodimers, and PDGF-AB, -BB, -CC and –DD αβ
receptor heterodimers Figure 1; [2].
The autophosphorylation serves two important func-

tions. First, it changes the conformation of the intracellular
part of the receptor so that the kinase is activated. There is
no 3-dimensional structure yet for PDGF receptors, so pre-
cise information about mechanisms that control the kinase
is not available. However, it is likely that in the resting
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Figure 1 Binding of the five PDGF isoforms induces different homo- and heterodimeric complexes of PDGFRα and PDGFRβ. The PDGF
isoforms are synthesized as precursor molecules with signal sequences (grey), precursor sequences (open) and growth factor domains (red, blue,
yellow and green). After dimerization, the isoforms are proteolytically processed (arrows) to their active forms which bind to the receptors. The
extracellular parts of the receptors contain 5 Ig-like domains; ligand binding occurs preferentially to domains 2 and 3, and domain 4 stabilizes the
dimer by a direct receptor-receptor interaction. The intracellular parts of the receptors contain tyrosine kinase domains split into two parts by an
intervening sequence. Ligand-induced dimerization induces autophosphorylation of the receptors, which activates their kinases and create dock-
ing sites for SH2-domain-containing signaling molecules, some of which are indicated in the figure. Activation of these signaling pathways pro-
motes cell growth, survival, migration and actin reorganization.
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state, the kinase is kept inactive by at least three mecha-
nisms: i) The activation loop in the kinase domain is likely
to be folded over the catalytic cleft; autophosphorylation of
a conserved tyrosine residue in this region causes the loop
to move away from the active site [10]. ii) The juxtamem-
brane part of the receptor is likely to be folded in a
loop which restricts the access to the active site;
autophosphorylation of two tyrosine residues in this re-
gion changes the conformation and enhances the kinase
activity [11]. iii) The C-terminal tail of the receptor is
most likely folded over the kinase domain; autophos-
phorylation of two C-terminally located tyrosine resi-
dues relieves the kinase of this inhibition [12]. Similar
regulatory mechanisms have been observed in the
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structurally related colony stimulating factor-1 receptor
(CSF1R) and FLT3.
Second, autophosphorylation creates docking sites for

SH2-domain-containing signaling molecules. The α-
and β-receptors contain 10 and 11 known autopho-
sphorylated tyrosine residues, respectively [13]. About
10 different families of SH2-domain-containing mole-
cules have been shown to selectively bind to different
phosphorylated residues in the PDGF receptors. These
include signaling molecules with intrinsic enzymatic ac-
tivities, such as tyrosine kinases of the Src family, the
SHP-2 tyrosine phosphatase, phospholipase C-γ (PLC-
γ) and the GTPase activating protein (GAP) for Ras.
Moreover, the receptors bind and activate signal trans-
ducers and activators of transcription (STATs), which
after activation are translocated to the nucleus where
they act as transcription factors. Finally, the receptors
bind adaptor molecules which lack intrinsic enzymatic
activities, but can form complexes with other signaling
molecules. Examples include the regulatory subunit p85
of the phosphatidylinositol 3′-kinase (PI3K), which
forms complex with the p110 catalytic subunit, and
Grb2 which binds the nucleotide exchange molecule
SOS1, activating Ras and the Erk MAP-kinase pathway
(Figure 1). In addition, the PDGF receptors bind other
adaptors, e.g. Shc, Nck, Crk and GAB, which mediate
interactions with a plethora of different downstream
signaling molecules. The activation of these signaling
pathways leads to cell proliferation and survival, as well
as to actin reorganization and cell migration. The exten-
sive cross-talk between the different signaling pathways
makes it difficult to assign individual pathways to spe-
cific responses; in a cell-type- and context-dependent
manner, several signaling pathways contribute to each
of the cellular responses.

Modulation and termination of PDGF receptor signaling
Signaling via PDGF receptors is carefully controlled and
modulated. In the early phase of signaling different
mechanisms assure that the signal rapidly reaches suffi-
cient strength. For instance, in PDGF stimulated cells re-
active oxygen species are produced in a PI3-kinase-
dependent pathway, which inhibit tyrosine phosphatases
by reacting with a cysteine residue in their active site
[14,15]. Another mechanism that amplifies the signaling
is the ubiquitination and degradation of MAP-kinase
phosphatase 3, which dephosphorylates and inactivates
Erk MAP-kinase; removal of this phosphatase enhances
Erk MAP-kinase activation [16].
There are also mechanisms that negatively modulate

PDGF signaling. One example is the docking of Ras-
GAP to the activated PDGFRβ; this counteracts the acti-
vation of Ras which occurs by the simultaneous docking
of the Grb2-SOS1 complex [17]. Interestingly, PDGFRα
does not bind Ras-GAP and therefore activates Erk
MAP-kinase more efficiently than PDGFRβ [18].
Negative modulatory effects are also exerted by tyro-

sine phosphatases which dephosphorylate and inactivate
PDGF receptors. Examples of such phosphatases include
PTP1B [19], TC-PTP [20] and PTPRJ/DEP-1 [21,22]. In
addition, the tyrosine phosphatase SHP-2 binds to PDGF
receptors and dephosphorylates the receptors and their
substrates. However, SHP-2 also positively modulates
signaling, e.g. via dephosphorylation of a C-terminal in-
hibitory phosphorylation site in Src family members,
thereby activating them [23], or by acting as an adaptor
for binding of the Grb2-SOS1 complex, thus promoting
Ras activation [24].
Other mechanisms of modulation of PDGF receptor

signaling are exerted by interactions with other cell sur-
face receptors. Thus, PDGF receptor interaction with
other tyrosine kinase receptors, such as the EGF recep-
tor [25], has been observed. Moreover, PDGF receptors
have been shown to interact with non-kinase receptors;
thus, integrins [26] and the low density lipoprotein
receptor-related protein [27-29] enhance signaling,
whereas interaction with the hyaluronan receptor CD44
suppresses signaling [30].
Activation of PDGF receptors triggers internalization

of the receptors in a clathrin- and dynamin-dependent
manner. Internalization is promoted by ubiquitination of
the receptors by the ubiquitin ligase Cbl [31]. Signaling
continues in endosomes [32] until the receptors are de-
graded in proteasomes and lysosomes. Alternatively, re-
ceptors can be sorted to recycling vesicles whereby they
reappear at the plasma membrane where they can signal
again. One mechanism which promotes sorting of recep-
tors to recycling is exerted by activation of PLCγ and
the downstream protein kinase C (PKC) [33], another
involves PI3-kinase-mediated uptake of the receptor via
an alternative internalization route, i.e. macropinocytosis
[34]. Increased receptor recycling is accompanied by an
increased amplitude and duration of signaling.

Normal function of PDGF isoforms and receptors
The physiological functions of PDGF have been analyzed
using mice with the genes for PDGF isoforms or recep-
tors knocked-out. These studies have elucidated import-
ant roles for PDGF isoforms in the development of
mesenchymal cell types of different organs reviewed in
[2]. Often PDGF isoforms are produced by epithelial or
endothelial cells and act in a paracrine manner on
nearby mesenchymal cells, such as fibroblasts, pericytes
and smooth muscle cells. Thus, signaling via PDGFRα is
important for the development of the facial skeleton,
hair follicles, spermatogenesis oligodendrocytes and as-
trocytes [35], as well as for the development of the lung
[36] and intestinal villi [37]. Signaling via PDGFRβ is
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important for the development of blood vessels, kidneys
[38-41] and white adipocytes [42].
In the adult, PDGF stimulates wound healing [43]. It

also regulates the intestinal fluid pressure in tissues and
thereby counteracts edema formation [44].

PDGF signaling antagonists
The involvement of PDGF overactivity in malignant dis-
eases (see further below), as well as certain non-
malignant diseases [3], has led to the development of
different types of antagonists of PDGF signaling that
now are under preclinical and clinical evaluation.
The developed inhibitors include antibodies, DNA

aptamers or soluble extracellular parts of the receptors
that bind PDGF isoforms and thus prevent their binding
to signaling receptors [45,46]. Alternatively, antibodies
or other binders can target the receptors and prevent
their activation or promote their degradation [47-49].
These types of antagonists have the advantage of being
reasonably specific, however, they are expensive and
cumbersome to administer. Another type of antagonists
are low molecular inhibitors of the receptor kinases
(Table 1). Several potent inhibitors of PDGF receptor ki-
nases have been developed, including imatinib, sunitinib,
sorafenib, pazopanib and nilotinib. None of these inhibi-
tors are specific; they all have their characteristic profiles
of inhibition of different other kinases. Thus, imatinib,
in addition to inhibiting PDGF receptor kinases, inhibits
the stem cell receptor (Kit) and Abl kinases, and suniti-
nib inhibits vascular endothelial cell growth factor
(VEGF) receptors and Flt3; sorafenib has an inhibitory
profile similar to sunitinib, but also inhibits the serine/
Table 1 Characteristics of PDGF receptor kinase inhibitors

Inhibitor Primary targets Secondary targets

Imatinib Abl, PDGFR, Kit Raf

Sunitinib PDGFR, VEGFR, Kit, Flt3

Sorafenib Raf, VEGFR, PDGFR, Kit, Flt3 FGFR

Pazopanib VEGFR, PDGFR, Kit FGFR

Nilotinib Kit, Abl, PDGFR

Cediranib VEGFR, Kit, PDGFR FGFR

Motesanib VEGFR, Kit PDGFR, Ret

Axitinib VEGFR PDGFR, Kit

Linifenib VEGFR, Kit PDGFR

Dasatinib Abl, Src PDGFR, Kit

Quizartinib FLT3 Kit, PDGFR, Ret, CSF1R

Ponatinib Ret, Abl PDGFR, VEGFR

The table summarizes the specificities of some kinase inhibitors targeting
PDGF receptors. The Kd:s of the different members of the PDGFR, VEGFR and
FGFR families are often similar and are lumped together, for simplicity. As
primary targets are listed the kinases that are inhibited at the lowest
concentrations (regardless of absolute concentrations). As secondary targets
are listed kinases that are inhibited by about 10-fold higher inhibitor concen-
trations. For references, see [3,50-54].
threonine kinase Raf. Although the lack of specificity
contributes to side effects and can be seen as a disadvan-
tage, experience has shown that it is often advantageous
to hit more than one kinase in tumor treatment.

PDGF signaling in malignant diseases
There are several observations supporting the notion
that overactivity of PDGF signaling can drive tumorigen-
esis [55]. In certain tumors, PDGF or PDGF receptor
genes are mutated, alternatively, their expressions are in-
creased. Thus, in the rare skin tumor dermatofibrosar-
coma protuberance (DFSP), the gene encoding PDGF-B
is fused to the gene encoding collagen 1A1 [56,57]. This
leads to the production of large amounts of a fusion pro-
tein consisting of N-terminal collagen sequence and C-
terminal PDGF-B sequence. After processing, a PDGF-
BB-like protein is released which stimulates the growth
and survival of the producer fibroblasts in an autocrine
manner [58].
The PDGF receptor genes have also been found to be

mutated in certain malignancies. Point mutations in the
PDGFRα gene occur in about 5% of gastrointestinal stro-
mal tumors (GIST); these mutations lead to amino acid
residue replacements in critical regions of the receptor
causing activation of the kinase [59]. In GIST, similar
mutations in the structurally related receptor Kit, is even
more common. PDGF receptor genes have been found
involved in gene rearrangements in certain leukemias
[60]. Thus, the intracellular parts of both PDGFRα and
PDGFβ genes have been found to be fused to different
partner genes that encode molecules that can oligomer-
ize; the combination of loss of regulatory sequences in
the juxtamembrane and transmembrane parts of the re-
ceptors and their oligomerization activate the receptor
kinases. Moreover, in 5-10% of glioblastoma multiforme
cases, the α-receptor gene is amplified resulting in ex-
pression of a high number of receptors [61-63]. Amplifi-
cation of PDGFRα has also been observed in
oligodendrogliomas [64], esophageal squamous cell car-
cinoma [65], and artery intimal sarcomas [66,67]. This
makes the cells susceptible to stimulation by lowered
amounts of PDGF, or if the number of receptors become
high enough, signaling may occur in a PDGF-independent
manner. An activating deletion mutation in the PDGFRα
gene has also been detected in a human glioblastoma [68].
During tumorigenesis, epithelial tumors may undergo

epithelial-mesenchymal transition (EMT), which is asso-
ciated with increased invasiveness and metastasis [69].
During EMT, PDGF receptor expression by the tumor
cells increases, so that epithelial tumors that initially did
not respond to PDGF may become responsive to PDGF
stimulation [70]. The expression of PDGF isoforms are
also part of the EMT program, which may enhance
PDGF receptor signaling by autocrine stimulation.
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PDGF produced by tumor cells or non-tumorigenic
cells, such as endothelial cells and macrophages, also
acts on non-tumor cells in solid tumors. Thus, pericytes
around blood vessels, and fibroblasts and myofibroblasts
in the stroma, carry PDGF receptors and respond to
PDGF. Pericytes are dependent on PDGF produced by
endothelial cells and have an important role during
angiogenesis [40]. PDGF stimulation of fibroblasts and
myofibroblasts in the stroma contributes to the in-
creased interstitial fluid pressure (IFP) in solid tumors.
The increased IFP is an obstacle in chemotherapeutic
treatment of tumors, since it decreases the transcapillar
flow and decreases drug uptake reviewed by [71].
The fact that PDGF receptor signaling is often over-

active in tumors has prompted attempts to treat patients
with various malignancies with PDGF/PDGF receptor
antagonists. During tumor progression, tumor cells ac-
quire a number of mutations, some of which drive
tumorigenesis. It has been observed that tumor cells
often become “addicted” to the signaling pathways that
are activated by mutational events, and that inhibition of
such pathways induces apoptosis of the tumor cells [72].
On the other hand, after some time re-growth of the
Table 2 Use of PDGFR kinase inhibitors in clinical trials for di

Tumor type Results of patient studies

Glioblastoma multifome Only limited effects of single agent treatment by

No significant effect of imatinib treatment in com

Chordoma 1 PR and 35 SD out of 50 patients treated, were

Meningeoma No or only modest effect of imatinib as single ag

Among 9 patients preselected for PDGFR express

Dermatofibrosarcoma
protuberance

In a Phase II study, 4 CR and 4 PR out of 12 patie

In other Phase II trials, PR was noticed in about h

Gastrointestinal stromal
tumor

Imatinib and other tyrosine kinase inhibitors agai
good results

Soft tissue sarcoma In a Phase III study with 369 patients a median p
tients treated with pazopanib compared with 1.6

Osteosarcoma No advantage of treatment with imatinib as sing

Some effect of imatinib in combination with eve

Chronic
myeloproliferative
diseases

Patients with CMML with rearrangement of PDGF

Hypereosinophilic
syndrome

Patients with HES responded to imatinib.

Patients who developed resistance to imatinib re

Prostate cancer Out of 44 patients with hormone-refractory prost
prostate specific antigen of >50%, and 9 had a si

No increased survival upon treatment with imatin

Non-small cell lung
cancer

Combination treatment with imatinib and doceta

2 PR and 7 SD were observed after treatment of

Neuroblastoma Little or no effect by imatinib as single agent trea
neuroblastoma.

CR, complete response; PR, partial response; SD, stable disease.
tumor often occurs, due to the appearance of various
types of resistance mechanisms. The involvement of
PDGF signaling in specific tumor types and the possible
usefulness of PDGF antagonists in tumor treatment
(Table 2), are discussed in the following sections. First,
mechanisms operating in the tumor cells themselves are
discussed; the involvement of PDGF stimulation in the
stroma compartment is discussed in a later chapter.

Brain tumors
A clear demonstration that autocrine stimulation by
PDGF can drive the development of glioblastoma multi-
forme (GBM) was the finding that simian sarcoma virus
(SSV) induces brain tumors in marmoset monkeys [73];
the transforming oncogene of SSV, v-sis, encodes a
PDGF-B-like molecule [74,75]. In human material, in-
creased expression of PDGF isoforms and PDGF recep-
tors have been demonstrated in GBM cell lines [76,77]
and in tumor tissue [78-84]. Notably, a malignancy-
dependent increased expression was noticed where the
α-receptor was primarily expressed in the tumor cells,
and the β-receptor in the stromal cells. Amplification of
the PDGF α-receptor has been demonstrated, but is not
fferent tumors
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as common as amplification of the EGF receptor [61].
Mutations in the PDGFRα gene, in the parts encoding
the extracellular as well as the intracellular domains
[85-88], have been observed; in addition, a fusion with
the VEGFR2 gene has been found [89].
The importance of autocrine stimulation by PDGF has

been verified in animal models, in which a retrovirus en-
coding PDGF-B was injected in newborn mice [90,91].
PDGF-induced transformation was found to be en-
hanced by mutations in certain tumor suppressor genes,
such as Ink4/Arf, TP53 and PTEN [92-94]. In cells with
Ink4a/Arf deficiency, PDGFRα promotes tumorigenesis
via the SHP2/PI3K/Akt/mTOR pathway [95].
PDGF overexpression forces differentiation of glial

cells to the oligodendrocyte lineage and promotes the
development of highly malignant oligodendroglial tu-
mors in mice [96-98]. The transforming efficiency of
PDGF stimulation is illustrated by the fact that overex-
pression of PDGF-B in corpus callosum causes GBM
also in adult rats [99]. Overexpression of the long iso-
forms of PDGF-A, which has a retention motif enhan-
cing its autocrine stimulatory effect, was also found to
efficiently promote GBM development [100].
Glioma stem cells preferentially express PDGFRβ and

its activation promotes glioma stem cell self-renewal,
suggesting that targeting of this receptor can be benefi-
cial in treatment of glioma patients [101]. PDGF-B de-
pletion completely abrogated the tumor initiating
capacity of glioma stem cells [102].
Despite the finding that the PDGF receptor kinase in-

hibitor imatinib enhances the cytotoxicity of radiation in
a mouse glioma model [103], only limited effects were
recorded by imatinib treatment in Phase II clinical trials
in glioblastoma patients [104,105]. Subsequent Phase II
and Phase III studies explored the combination between
imatinib and hydroxyurea in the treatment of recurrent
glioblastoma, but no clinically meaningful antitumor ef-
fect was observed [106-108].
In addition to glioblastoma, PDGF overactivity has

been implicated also in other types of brain tumors.
PDGFRα and β have been shown to be overexpressed in
ependymoma of children and expression of PDGFα was
found to correlate to poor prognosis [109].
Chordoma is a rare slow-growing tumor arising from

remnants of the notochord, which often expresses
PDGFRβ. Following encouraging treatment results of oc-
casional patients with imatinib [110], a Phase II clinical
study was organized. Among 50 patients treated, one
partial response and 35 patients with stable disease were
recorded [111].
Meningeomas are mostly benign tumors with good

prognosis that are treated with surgery, but some are in-
operable and requires other treatment. Since meningi-
omas often express PDGF receptors, treatments of
recurrent meningeomas with single-agent imatinib [112]
or with imatinib plus hydroxyurea [113] have been tried;
however, no or only modest effect was recorded. On the
other hand, more encouraging results were obtained in a
small study with preselected patients with recurrent
meningeomas with expression of at least one of the
PDGF receptors; whereas no complete or partial re-
sponses were seen, seven out of nine patients showed
stable disease after imatinib treatment [114].
PDGF receptors, as well as c-Kit, have been found to

be overexpressed and overactivated in peripheral and
vestibular schwannomas [115]. Treatment of vestibular
schwannoma cells [116] or other types of primary
schwannoma cells [117], lacking the tumor suppressor
NF2, with nilotinib inhibited the growth of the cells
in vitro.

Sarcomas
Like in the case of glioblastomas, the normal counter-
part cells of sarcomas express PDGF receptors. Overex-
pression of PDGF isoforms may then stimulate cell
growth and survival in autocrine and paracrine manners.
The clearest example that such mechanisms can drive
tumorigenesis is the rare skin tumor DFSP, which is
characterized by a gene rearrangement placing the colla-
gen 1A1 gene upstream of the PDGF-B gene [118]. This
leads to the production of a fusion protein which is
processed to a molecule similar to mature PDGF-BB and
causes autocrine stimulation of growth [57,58,119].
Inhibition of PDGF receptor signaling by the kinase

inhibitor imatinib inhibits the growth and promotes
apoptosis of DFSP cells [120,121]. Treatment with ima-
tinib has also shown beneficial effects for individual pa-
tients with DFSP [122-126]. These encouraging findings
prompted a multicenter Phase II trial; out of 12 patients
with DFSP, 4 showed complete and 4 partial responses
[127]. The median time to progression was 24 months
[128]. Additional Phase II trials showed partial responses
in about half of the cases; however, the response were
rather short-lived whereafter resistance mechanisms oc-
curred [118,129-131].
In about 5% of patients with GIST, PDGFRα is acti-

vated by point mutations [59]. Treatment with imatinib
has been shown to improve the outcome for GIST pa-
tients [132-134]. Upon development of resistance to
imatinib, other kinase inhibitors, such as sunitinib [135]
and nilotinib [136-138] have shown efficacy.
PDGF and PDGF receptors are also expressed in other

types of sarcomas. Early studies revealed that a human
osteosarcoma cell line, U-2OS, secretes a PDGF-like
growth factor and shows autocrine receptor activation by
this factor [139]. Malignancy-dependent co-expression of
PDGF and PDGF receptors have also been observed in bi-
opsies of soft tissue sarcoma [140,141], osteosarcoma



Figure 2 Mutation of PDGF receptors in malignancies. PDGFRα
(left part) has been found to be activated by point mutations in
about 5% of GIST cases. In the figure a mutation is indicated (star) in
the juxtamembrane domain, but can occur also in other parts of the
protein. In HES the intracellular part of PDGFRα (red) has been found
to be fused to FIP1L1 (green), and in CMML the intracellular part of
PDGFRβ (blue) has been found to be fused to TEL (yellow). Other
fusion partners have also been identified.
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[142] and synovial sarcoma [143]. Nearly all cases of
Ewing’s sarcoma show the presence of the chimeric tran-
scription factor EWS/ETS which causes upregulation of
PDGF-C; treatment of a cell line from a Ewing’s sarcoma
with a PDGFR kinase inhibitor was shown to inhibit its
anchorage-independent growth [144].
Whereas treatment of osteosarcoma patients with ima-

tinib did not show any advantage as a single agent [142],
the combination of the mTOR inhibitor everolimus and
imatinib may be useful in the treatment of synovial sar-
coma [143].
PDGFRα is selectively upregulated in rhabdomyosar-

coma [145,146], and PDGFRα expression is associated
with poor prognosis [147,148]. Treatment with imatinib
or a neutralizing PDGFRα antibody inhibited growth of
alveolar rhabdomyosarcoma in a mouse model [146].
In a large randomized, double-blind, placebo-controlled

Phase III trial, 369 patients with metastatic non-adipocytic
soft tissue sarcoma who had failed on standard therapy,
were subjected to treatment with pazopanib or not [149].
A median progression-free survival of 4.6 months and an
overall survival of 12.5 months were recorded for the pazo-
panib treated patients, compared to 1.6 and 10.7 months,
respectively for untreated patients. This study thus showed
that treatment with pazopanib is of some advantage for
these patients with sarcomas.
PDGF and PDGF receptors are also overexpressed in

dog hemangiosarcoma, a malignant neoplasia of vascular
endothelial cells [150]. Treatment of hemangiosarcoma
in dogs with imatinib and dasatinib augmented the re-
sponse to doxorubicin; however, dasatinib, which in-
hibits Src in addition to PDGF receptor kinases, was
more efficient [151].

Leukemias and lymphomas
Activating mutations in the Abl and JAK2 genes, encod-
ing tyrosine kinases, are common in myeloproliferative
diseases; in some cases mutations are also seen in the
PDGFRα and PDGFRβ genes [60].
In chronic monomyelocytic leukemia (CMML) the

PDGFRβ gene has been found to be fused with the gene
encoding the transcription factor TEL; the N-terminal of
the fusion protein contains sequences from TEL which
is followed by the intracellular part of the receptor con-
taining the kinase domain [152] (Figure 2). There are
also other fusion partners, including Rabaptin 5 [153],
HIP1 [154] and H4 [155]. In a case of thrombocythemia,
the tumor suppressor gene KANK1 was found to be
fused with the PDGFRβ gene [156].
PDGFRα are also rearranged in certain malignancies.

Thus, in hypereosinophilic syndrome (HES), the α-receptor
gene is fused to the FIP1L1 gene [157-159] (Figure 2). Acti-
vating point mutations in the PDGF α-receptor have also
been seen [160].
These proteins all have the ability to oligomerize and
thus cause clustering of the receptor kinase; the juxta-
position of the kinase domains, as well as the loss of in-
hibitory transmembrane [161] and juxtamembrane [162]
sequences, cause activation of the kinase. Moreover, es-
cape of ubiquitin-mediated degradation causing accumu-
lation of large amounts of the fusion proteins may also
contribute to the transformation [163].
Activation of the PDGFRβ kinase through gene rear-

rangements leads to chronic myeologenous leukemia
(CML) or CMML [152], whereas activation of the PDGFRα
kinase causes HES or chronic eosinophilic leukemia
[164-166]. Interestingly, activation of yet other tyrosine ki-
nases is associated with other types of leukemia, i.e. activa-
tion of the FLT3 kinase with acute myelocytic leukemia
(AML) or myelodysplastic syndrome, and activation of the
Kit kinase with aggressive mastocytosis, myelodysplastic
syndrome and AML for references see [166]. It is likely that
these differences reflect differences in the activation of sig-
naling pathways. FIP1L1-PDGFRα activates STAT5, PI3-
kinase and the Ras-Erk and p38 MAP-kinase pathways;
particularly, the stronger activation of Erk and p38 MAP-
kinases by FIP1L1-PDGFRα, compared to TEL-PDGFRβ,
could be linked to eosinophilic differentiation [167]. Both
TEL-PDGFRα and FIP1L1-PDGFRα fusion proteins acti-
vate the transcription factors STAT1, 3 and 5, and nuclear
factor-κB (NFκB), and cause proliferation and differenti-
ation towards the eosinophilic lineage [168].
Patients with CMML have been successfully treated with

imatinib [169], as have patients with HES [170-173]. Point
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mutations conferring imatinib resistance have been de-
scribed both for TEL-PDGFRβ [174] and FIP1L1-PDGFRα
[157]. Other kinase inhibitors, such as nilotinib or sorafe-
nib [175], or midostaurin (PKC412) [164], could inhibit
some of the resistant kinase mutants, and offers alternative
treatments [176]. Interestingly, only few cases of resistance
due to point mutations in the PDGFR kinase domains
have been reported, in contrast to the situation for the
treatment of chronic myeloic leukemia in which such mu-
tations in the kinase domain of Brc-Abl are very common;
it has been suggested that this is because the PDGFRα kin-
ase domain contains only few residues which can be ex-
changed resulting in interference with inhibitor binding,
without loss of kinase activity [177].
Large granular lymphocyte leukemia results from the

expansion of cytotoxic T cells or natural killer cells, cell
types that have been shown to express PDGF receptors
[178,179]. Together with stimulation by IL-15, autocrine
stimulation by PDGF-BB drives the development of this
rare leukemia, and a PDGF-BB neutralizing antibody
was found to inhibit growth and survival of the leukemia
cells [180].
Anaplastic large cell lymphoma is an aggressive non-

Hodgkin’s lymphoma, which is characterized by the oc-
currence of a fusion between nucleophosmin and the
tyrosine kinase ALK. In a mouse model of this disease,
the AP-1 members Jun and JunB were found to promote
the expression of PDGF-B in the lymphoma cells [181].
The importance of the autocrine PDGF stimulation for
tumorigenesis is illustrated by the finding that treatment
of the transgenic mice with imatinib significantly pro-
longed their life. Moreover, treatment of a patient with
anaplastic large cell lymphoma with imatinib resulted in
rapid, complete and sustained remission [181].

Prostate cancer
Immunohistochemical stainings have revealed that
PDGFRβ is upregulated in most primary and metastatic
prostate cancer cells [182]. Moreover, PDGFRβ mRNA ex-
pression was identified by microarray analyses as one of
five mRNAs that predict prostate cancer recurrence, the
other four being chromogranin A, HOXC6, IPTR3 and
sialyltransferase-1 [183]. Whereas the PDGFRβ ligand
PDGF-B has not been found to be overexpressed in pros-
tate tumors, the other PDGFRβ ligand, PDGF-D, is often
expressed at high levels and its expression correlates to the
degree of malignancy [7]. Overexpression of PDGF-D in a
mouse model significantly enhanced prostate carcinoma
onset and invasiveness [184]. Loss of PTEN, which en-
hances PI3-kinase signaling, promotes production of
PDGF-D, whereas the AMP-activated kinase (AMPK) reg-
ulates PDGF-B expression [185]. Overexpression of PDGF-
D in PC3 prostate cancer cells was found to promote EMT
and a stem cell phenotype, which may explain the
increased invasiveness [186]. When PDGF-B and PDGF-D
were transfected into non-malignant prostate epithelial
cells, PDGF-D was found to induce cell migration and in-
vasion more efficiently than PDGF-B [187]. The stronger
effect of PDGF-D was dependent of the Jun MAP-kinase
and involved shedding and activation of the serine protease
matriptase. The mechanism behind the stronger tumori-
genic effect of PDGF-D, compared to PDGF-B that binds
to the same receptor, remains to be elucidated.
Interestingly, PDGF-D, but not PDGF-B, was able to

induce osteoclast differentiation, and to upregulate the
expression and nuclear translocation of nuclear factor of
activated T cells 1 (NFAT-1), a master regulator of osteo-
clastogenesis [188]. This production of PDGF-D by pros-
tate cancer cells is likely to be of importance for the
establishment of bone metastases.
PDGFRα has also been implicated in prostate cancer.

In a preclinical model of disseminated prostate cancer, it
was shown that treatment with a neutralizing antibody
against PDGFRα inhibited the growth of skeletal metas-
tases [189,190]. Moreover, knock-down of PDGFRα,
as well as PDGFRβ, by siRNA suppressed growth of
prostate cancer cells in mice and suppressed tumor
angiogenesis [191]. Interestingly, evidence have been
presented that a soluble component of the bone marrow
can activate PDGFRα, and promote bone metastasis
of prostate cancer cells, through a mechanism that does
not require ligand-binding or receptor dimerization
[192].
Preclinical studies have demonstrated potential benefit

of inhibition of PDGFRβ signaling by imatinib in pros-
tate cancer [193,194]. Whereas a Phase I clinical trial
with imatinib combined with docetaxel showed some
benefit [195], placebo-controlled clinical trials did not
show any significantly increased progression free or
overall survival [196,197]. Further clinical trials were
halted because of excessive side effects; possibly, other
PDGF receptor kinase inhibitors would be more useful.
An interesting candidate is cediranib, which inhibits
PDGF and VEGF receptor kinases and has been shown
to inhibit intraosseous growth of PDGF-D positive pros-
tate cancer cells in a mouse model [198].

Liver cancer
During the progression of hepatocellular carcinoma, and
in conjunction with epithelial-mesenchymal transition
(EMT), PDGF-A as well as PDGFRα and β are induced
[199]. Inhibition of PDGF receptor signaling was found
to decrease cell migration in vitro and tumor growth
in vivo, in a β-catenin-dependent manner, indicating an
important role for PDGF signaling in hepatocyte tumor
progression [200]. Sorafenib, which in addition to
PDGFR inhibits Raf, VEGFR and Kit, is now standard
treatment for patients with hepatocellular carcinoma.
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However, it is not clear how important PDGFR kinase
inhibition is for the beneficial effects [201,202].
PDGF-A and PDGFRα mRNA and protein are often

overexpressed in patients with cholangiocarcinoma;
treatment of cholangiocarcinoma cell lines with the
PDGF receptor kinase inhibitors imatinib or sunitinib
suppressed cell viability and migration [203]. Sorafenib
also inhibited cholangiocarcinoma cell growth and sur-
vival in vitro and in vivo [204]. In another study,
myofibroblast-derived PDGF-BB was shown to provide
survival signals for cholangiocarcinoma cells, thus pro-
tecting them from TRAIL-mediated cytotoxicity by en-
hancing Hedgehog signaling [205]. Targeting PDGFRα
by imatinib sensitized cholangiocarcinoma cells to apop-
totic stimuli in vitro and in vivo [206].

Non-small cell lung cancer
PDGF receptors are not expressed, or expressed at low
levels, in normal lung epithelial cells, however, expres-
sion of PDGFRα has been reported in lung cancer cell
lines and tumor tissue [207-209]. Expression of PDGFRβ
was also seen, but mainly in the stromal cells. Increased
expression of PDGFRβ was seen in the rare sarcomatoid
type of non-small cell lung cancer [210]. Expression of
PDGF and PDGF receptors in lung cancer was found to
be associated with poor prognosis [211]. Inhibition of
PDGF in preclinical models of non-small cell lung can-
cer by treatment with a neutralizing PDGFRα antibody
(MEDI-575) caused a significant decrease in stromal
fibroblast content but had only minor effect on tumor
cell proliferation [212]. In addition, transfection of a
non-receptor binding mutant of PDGF-A (PDGF-0) in
A549 lung cancer cells, which inactivates the PDGF pro-
duced by these cells, led to a markedly decreased tumor
growth in vivo because of impaired recruitment of peri-
endothelial cells [213].
A Phase II clinical study explored the effect of imatinib

combined with docetaxel for the treatment of recurrent
non-small cell lung cancer, however, only one partial re-
sponse and 4 stable disease out of 23 treated patients
were seen [214]; thus, the study did not reach its object-
ive. Another study focused on Asian patients who were
treated with sunitinib; two partial responses and 7 stable
disease were observed out of 18 patients treated [215].
Larger studies need to be conducted before it is possible
to determine whether inhibition of PDGF receptors, with
or without inhibition of VEGF receptors, is of any bene-
fit for lung cancer patients.

Breast cancer
In breast cancer, expression of PDGF in tumor cells and
PDGF receptors in stromal cells have been reported
[216,217]. PDGF receptors are also expressed in the
tumor cells, which correlate with tumor progression and
invasion [70,218,219]. PDGF receptors have been ob-
served to be upregulated upon IGF1 receptor independ-
ence in an animal model [220].
Combining imatinib treatment with radiotherapy

showed a significantly stronger inhibition of cell prolifer-
ation compared to radiotherapy alone in a mouse model
for breast cancer [221].
PDGF-D produced by cells in the stroma of breast

cancers, e.g. adipose tissue-derived stem cells, was found
to induce EMT of the cancer cells in a paracrine man-
ner, thereby promoting the formation of cancer stem
cells and tumorigenesis [222].
It remains to be determined whether inhibition of

PDGF receptor signaling is of benefit for breast cancer
patients. A possible subgroup that could benefit is pa-
tients with estrogen receptor positive tumors undergoing
aromatase inhibition therapy, since this treatment has
been found to be associated with an upregulation of
PDGFRβ on the tumor cells [223].

Colorectal cancer
In colorectal cancers PDGF receptors are mainly
expressed by stromal cells and pericytes [224,225], but
PDGF receptor expression has also been noted on colo-
rectal carcinoma cell lines [226,227]. Expression of
PDGF receptors is associated with poor prognosis for
patients with colorectal cancer [228]. Studies using pre-
clinical models have shown that colorectal cancer cells
can acquire PDGFRβ in conjunction with EMT, and that
activation of this receptor promotes metastasis [229].

Other tumors
Several other tumor types have been reported to involve
overactive PDGF signaling in the tumor cells. Thus,
PDGF-D and PDGFRβ were found to be co-expressed in
several mesothelioma cell lines, resulting in autocrine
stimulation of cell proliferation [230].
In Wilms’ tumor of the kidney, PDGF-A and PDGFRα

was expressed in 50% and 55% of the cases, respectively,
in a cohort of 62 patients; interestingly, expression of
PDGF-A and PDGFRα correlated with good prognosis
[231]. It is possible that expression of PDGF-A and
PDGFRα reflect a differentiated phenotype and therefore
correlates to favorable prognosis. This is in contrast to
breast [232], ovarian [233] and lung [207,234] carcin-
omas, in which cases PDGF and PDGF receptor expres-
sion correlate to poor prognosis.
The childhood tumor neuroblastoma arises from the

neural crest remnants of the sympathetic nervous sys-
tem, and has been shown to express PDGF receptors
[235], as well as c-Kit [236]. Whereas imatinib inhibited
neuroblastoma cells in vitro and in xenografts, little or
no treatment effect as single agent was seen in children
with relapsed or refractory neuroblastoma [237].
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Activation of the hedgehog pathway occurs frequently
in basal cell carcinoma of the skin. The transcription
factor Gli1, which is activated in the hedgehog pathway,
activates the promoter of the PDGFRα gene and thus
promotes PDGFRα expression; this is an important
mechanism by which hedgehog signaling promotes
tumorigenesis [238], and suggests that PDGF inhibition
could be beneficial in skin tumor treatment.
Leydig cell tumors of the testis express high levels of

PDGF isoforms and PDGF receptors [239]. However,
treatment of a patient with imatinib was not successful
[240]. On the other hand, human testicular germ tumors
also express PDGF receptors, and treatment with sunitinib
as single agent showed beneficial effects even in cisplatin-
resistant tumors in a mouse model [241].
Overexpression of PDGF-A, -B and –C isoforms and

both PDGF receptors were found to be crucial for the de-
velopment of thyroid nodules and recurrent goitre [242].

Targeting PDGF in tumor stroma
In addition to tumor cells, non-tumor cells in solid tu-
mors, such as macrophages and endothelial cells, pro-
duce PDGF isoforms. PDGF receptors are expressed on
pericytes and smooth muscle cells of vessels, as well as
on fibroblasts and myofibroblasts. Recent studies have
shown that targeting of cells in tumor stroma can be
beneficial in tumor treatment, particularly if combined
with targeting of the tumor cells directly.

Anti-angiogenic treatment
Angiogenesis is promoted by several different factors, in-
cluding VEGF, FGF, TGFβ, angiopoietins and PDGF
[243]. A monoclonal antibody against VEGF, bevacizu-
mab, is already used clinically. PDGF has an accessory
role in angiogenesis and, in particular, promotes pericyte
recruitment to vessels. Studies using different mouse
models have shown that anti-angiogenic therapy can be
more efficient by combination of inhibition of VEGF sig-
naling, targeting endothelial cells, and PDGF signaling,
targeting pericytes [243-248]. Combination therapy
probably interrupts the trophic relationship between
endothelial cells and pericytes. Simultaneous inhibition
of fibroblast growth factor (FGF) may be even more
beneficial [50,249]. Interestingly, resistance to anti-VEGF
treatment has been shown to involve increased expres-
sion of PDGF-C [250]. However, the effect of anti-PDGF
treatment may be context-dependent. Thus, no synergis-
tic effect was seen by the combination of anti-VEGF and
anti-PDGF treatment in mouse models of colorectal and
pancreatic cancer; in fact PDGF overexpression was
found to inhibit endothelial cells and angiogenesis by in-
tensive pericyte recruitment [251]. Another complication
was reported from a clinical study in which CDP860, an
engineered Fab’ fragment inhibiting PDGFRβ, was used;
the study had to be interrupted since seven of eight pa-
tients developed fluid retention and three significant as-
cites upon treatment [47].
Bone-marrow-derived mesenchymal stem cells have

been shown to exert an anti-angiogenic effect in preclin-
ical models of glioma by inhibiting the recruitment of
endothelial progenitor cells through decreased expres-
sion of PDGF-BB and other angiogenic factors [252].
A mechanism whereby PDGF-BB promotes tumor

angiogenesis and tumor growth was recently presented; by
induction of erythropoietin, PDGF-BB promotes endothe-
lial cell proliferation, migration, sprouting and tube forma-
tion, and promotes extramodullary hematopoiesis leading
to increased oxygen perfusion and protection against
tumor-associated anemia [253]. Another mechanism was
unraveled by studies of chronic lymphocytic leukemia;
PDGF secreted by these tumor cells stimulated mesenchy-
mal stromal cells to produce VEGF [254].
PDGF-BB has also been shown to stimulate lymphangio-

genesis [255], and to promote lymphatic metastasis in gas-
tric carcinoma [256]. In papillary thyroid cancer, expression
of PDGFRα correlated with lymphatic metastases [257].
Cancer-associated fibroblasts
It has become increasingly appreciated that stromal cells
of solid tumors contribute to tumorigenesis [258,259].
Such cells include, in addition to vascular cells, e.g. mac-
rophages and cancer-associated fibroblasts (CAFs). The
latter cell type is heterogeneous and may derive from tis-
sue fibroblasts, bone-marrow-derived progenitor cells or
transdifferentiating epithelial cells. The various cell types
of the stromal compartment contribute to tumorigenesis
by secreting various growth factors and cytokines which
promotes growth, survival and migration of the tumor
cells, as well as epithelial-mesenchymal transition and
tumor angiogenesis.
PDGF receptors are expressed on CAFs and there are

several reports that PDGF stimulation affects CAF func-
tion. Thus, ectopic expression of PDGF-BB was found to
promote stroma formation and tumor growth of melan-
oma [260], tumorigenesis of immortalized keratinocytes
[261] and growth of prostate cancer [262]. Tumor cell-
derived PDGF-AA was found to recruit CAFs in xenograft
studies of breast [263] and lung [264] carcinomas. Trans-
genic expression of PDGF-CC in mouse liver cells resulted
in tissue fibrosis and promoted development of hepatocel-
lular carcinoma [265]. Moreover, expression of PDGF-CC
in mouse models promoted recruitment of CAFs and
growth of malignant melanoma [266] and liver metastasis
of colorectal cancer [267]. Finally, ectopic expression of
PDGF-DD was found to promote tumorigenesis and
angiogenesis [268,269]. Stromal PDGF receptor expression
has been shown to be associated with poor prognosis in
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breast and prostate cancer [270,271], in colorectal cancer
[228,272] and in pancreatic carcinoma [273].
CAFs and myofibroblasts make contacts with collagen

fibers of the extracellular matrix. PDGF stimulation of
these cells causes cell contraction leading to an increased
tumor interstitial pressure [71]. This is an obstacle in
treatment of tumor patients with chemotherapy, since it
decreases transcapillary transport and drug uptake. Treat-
ment of mice with different types of solid tumors with
PDGF antagonists was found to decrease IFP, to increase
drug uptake, and to improve the efficiency of treatment
with chemotherapeutic drugs [274-276]. In addition, treat-
ment with VEGF antagonists was also found to decrease
tumor IFP [277,278], and the combination of PDGF and
VEGF antagonists gave an additive effect [279].
Targeting PDGF receptors in the stroma has been

found to inhibit lung cancer growth [280,281] and bone
metastasis [282], and colon cancer growth and metasta-
sis [283] in mouse models.

Future perspectives
The fact that PDGF and/or PDGF receptors are overex-
pressed or mutated in different tumors makes it desirable
to investigate whether PDGF or PDGF receptor antagonists
can be used to treat patients with these diseases. Some en-
couraging results have already been obtained by treatment
of some rather rare tumors driven by overactive PDGF re-
ceptor signaling due to mutations of either PDGF or PDGF
receptor genes. However, resistance mechanisms limit the
success of such treatments, and anti-PDGF receptor treat-
ment most likely will have to be combined with other signal
transduction inhibitors, chemotherapeutical agents or other
treatments, in order to achieve long lasting remissions.
In solid tumors PDGF receptors are expressed on peri-

cytes of vessels and on fibroblasts and myofibroblasts of
the stroma. Tumor cells are dependent on their environ-
ment for their proliferation and survival, making non-
malignant PDGF receptor expressing cells interesting tar-
gets in tumor treatment. Further studies are needed in
order to explore whether anti-PDGF receptor treatment
targeting non-malignant cells in the tumor, in combin-
ation with anti-tumor cell treatment, will be of benefit for
patients. It also remains to be determined whether select-
ive inhibition of PDGF or PDGF receptors by e.g. mono-
clonal antibodies or ligand traps, or more unspecific
inhibition of PDGF receptor kinases by low molecular
weight inhibitors, will give the best clinical results.
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