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Cell adhesion and intracellular calcium signaling
in neurons
Lifu Sheng, Iryna Leshchyns’ka and Vladimir Sytnyk*
Abstract

Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal
migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity.
CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including
changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a
prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular
functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in
intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in
neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular
Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent
Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking
CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.
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Review
Cell adhesion molecules (CAMs) expressed on the neur-
onal cell surface play crucial roles in neuronal migration,
axonal fasciculation, and neurite outgrowth during brain
development. They also play an important role in regu-
lation of synaptic plasticity in adult brain and axonal
regeneration in injured nervous system [1-6].
Functions of CAMs are induced in response to their

binding to ligands presented either in the soluble form
or on membranes of other cells or on artificial surfaces,
a process which is often called CAM activation. CAM
activation induces a number of intracellular signaling
cascades, which are essential for CAM-mediated functions
(for extensive review see [5,7-11]). Among signaling
cascades activated by CAMs, changes in intracellular Ca2+

levels have been documented to occur in neurons in
response to activation of virtually all families of CAMs,
including the three main families comprising the immuno-
globulin superfamily (IgSF), cadherins and integrins.
Intracellular Ca2+ serves as a secondary signaling

messenger with Ca2+ channels at the neuronal cell surface
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and internal Ca2+ stores regulating intracellular Ca2+

concentrations in neurons and other cells. Intracellular
Ca2+ has critical roles in all aspects of neuronal develop-
ment including neurite elongation and neuronal growth
cone motility in developing neurons [12-17].
Intracellular signaling cascades activated by CAMs in

response to ligand binding induce a number of physiolo-
gically important responses in neurons, among which
changes in neurite outgrowth are probably the best char-
acterized for CAMs of different families [5,7,11,18]. In
this review, we systematically analyze studies reporting
changes in intracellular Ca2+ levels in response to activation
of IgSF CAMs, cadherins and integrins in neurons. We
also analyze the experimental evidence supporting the
involvement of the cell surface Ca2+ channels and intracel-
lular Ca2+ stores in intracellular Ca2+ changes induced
by CAMs of these families, and review the data showing
the effects of Ca2+ channel inhibitors on CAM-induced
neurite outgrowth.
Changes in intracellular Ca2+ levels induced by activation
of CAMs of the immunoglobulin superfamily (IgSF)
CAM-induced increases in intracellular Ca2+ levels were
first documented in response to activation of the neural
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cell adhesion molecule (NCAM) and L1, both members of
the IgSF (Table 1). NCAM mediates homophilic adhesion,
i.e. extracellular domains of NCAM molecules on cell
surface membranes of adjacent cells bind to each other. It
functions in the developing nervous system by regulating
neuronal migration and differentiation and also plays
an important role in adult brain by regulating memory
formation and brain plasticity [19,20]. Application of
purified NCAM, which binds to NCAM at the cell surface,
induced an increase in intracellular Ca2+ levels in small
cerebellar neurons [21]. Similar results were obtained
with artificial ligands of NCAM, such as peptide ligands of
NCAM, which bind to the extracellular domain of NCAM
and which have been shown to induce an increase in
intracellular Ca2+ levels in PC12 cells and rat hippocampal
neurons loaded with a Ca2+ indicator Fura-2 acetoxy-
methyl ester (AM) [22,23]. The effects of antibodies
against the extracellular domain of NCAM used as an
artificial NCAM ligand were analyzed in several studies
and have been shown to increase intracellular Ca2+

levels in PC12 cells and in small cerebellar neurons as
measured using fluorimetry and a Ca2+ indicator Quin-
2AM [24,25]. In another study, polyclonal but not
monoclonal antibodies against the extracellular domain
of NCAM have been shown to induce an increase in
intracellular Ca2+ levels in dorsal root ganglion neurons
but not in small cerebellar neurons loaded with Fura-
2AM [21], suggesting that the type of the antibodies used
can influence the effects of the antibody on intracellular
Ca2+ levels.
CAMs of the L1 family, including L1, close homolog

of L1 (CHL1), neurofascin and Neuron-glia cell adhesion
molecule (NgCAM), also mediate homophilic adhesion
and play a prominent role in the developing central
nervous system (CNS) [26,27]. Fluorimetric observations
of Quin-2AM loaded cells and microscopical recording of
Fura-2AM loaded neurons showed that purified or recom-
binant L1 and antibodies against the extracellular domain
of L1 induce an increase in intracellular Ca2+ levels in
PC12 cells [24], small cerebellar neurons [21,25,28],
cortical neurons [29,30], and dorsal root ganglion neurons
[21]. Ca2+ influx in response to L1 activation has also been
observed using voltage patch clamp recordings in cortical
neurons [30]. In another study, however, activation of L1
had no effect on intracellular Ca2+ levels in Fura-2AM
loaded growth cones of dorsal root ganglion neurons [31].
Interestingly, the effect of L1 antibodies depended on the
epitope recognized, with one study reporting an increase
in intracellular Ca2+ levels in neurons incubated with a
monoclonal antibody against an epitope within fibronectin
type III repeats of L1, but not in neurons incubated
with the monoclonal antibodies against epitopes within
immunoglobulin domains [28], suggesting that differ-
ences in L1 ligands used may contribute to differences
in the effects on intracellular Ca2+ levels. Similar to L1,
exposure to immunopurified NgCAM or anti-NgCAM
antibodies induced an increase in intracellular Ca2+ levels
in neurons from the brains of songbird zebra finch loaded
with a Ca2+ indicator Fluo-3AM and analyzed by confocal
microscopy [32]. While the role of Ca2+ in signaling
induced by another member of this family, CHL1, has
been recently suggested [33], the direct evidence that
CHL1 can also induce an increase in intracellular Ca2+

levels is still missing.
In addition to NCAM and L1 family members, activa-

tion of the immunoglobulin superfamily cell adhesion
molecules neuroplastin (Np) and limbic system-associated
membrane protein (LAMP) has also been shown to
induce increases in intracellular Ca2+ levels. Np mediates
cell-to-cell adhesion via homophilic interactions and is
expressed as two isoforms named according to the mo-
lecular weight Np55 and Np65. Application of recom-
binant ectodomains of Np55 and Np65 or a mimicking
peptide of Np65 induced an increase in intracellular
Ca2+ levels in synapses of cultured hippocampal neurons
loaded with a Ca2+ indicator Fluo-4AM [34,35]. Soluble
recombinant LAMP has been shown to induce increases
in intracellular Ca2+ in hippocampal neurons and neurons
from visual cortex loaded with Fluo-3AM [36].
Experiments with inhibitors of various types of Ca2+

channels indicate that changes in intracellular Ca2+ levels
in response to activation of IgSF CAMs can be mediated
by several classes of VDCCs. Inhibitors of L- and T-type
VDCCs reduced the increase in intracellular Ca2+ levels
observed in response to NCAM activation in cultured
hippocampal neurons [23] and PC12 cells [24]. Pimozide,
an inhibitor of T-type VDCCs, was more potent in inhi-
biting the NCAM-induced Ca2+ response when compared
to nifedipine, an inhibitor of L-type VDCCs, in cultured
hippocampal neurons [23]. Fluorometric Ca2+ measurements
showed that inhibitors of nonselective cation channels also
reduced NCAM-dependent Ca2+ influx in Fura-2AM
loaded neurons, suggesting that these channels are also
activated in response to NCAM ligands [23]. Nifedipine
fully blocked and ω-conotoxin, an inhibitor of N-type
VDCCs, partially blocked L1-dependent increase in intra-
cellular Ca2+ [29,30,37], while in another study inhibitors
of L-type VDCCs verapamil and diltiazem failed to block
the L1-dependent Ca2+ influx in mouse dorsal root
ganglion neurons and small cerebellar neurons [21].
Nifedipine and ω-conotoxin blocked NgCAM-induced
Ca2+ influx [32]. The LAMP-induced intracellular Ca2+

increases in hippocampal neurons were fully inhibited
by nifedipine but not ω-conotoxin [36]. Altogether,
these data indicate that different members of IgSF act
at different VDCCs in a tissue specific manner.
Not only inhibitors of cell surface Ca2+ channels, but

also depletion of the internal Ca2+ stores by incubation



Table 1 An overview of CAMs, activation of which induces an increase in intracellular Ca2+ levels

CAMs Method/Ca2+ indicator Ligand, concentration Cell types (localization) Effect on
Ca2+

Inhibitors tested (effect on
ligand induced Ca2+ increase)

References

IgSF

NCAM Fluorimetry/Quin-2AM Polyclonal NCAM antibodies, 0.4-1 mg/ml PC12 cells ↑ Verapamil (full inhibition) [24]

Diltiazem (full inhibition)

Nifedipine (no effect)

Microscopy/Fura-2AM Synthetic peptide ligand of NCAM
ectodomain, 50 μM

PC12-E2 cells ↑ Not tested [22]

Fluorimetry/Quin-2AM Fab fragments of monoclonal NCAM
antibodies (H28), 0.1-0.2 mg/ml

PC12 cells No effect Not tested [24]

Microscopy/Fura-2AM Polyclonal NCAM antibodies, 0.3-0.5 mg/ml PC12 cells ↑ Not tested [21]

Microscopy/Fura-2AM Monoclonal NCAM antibodies, 0.1 mg/ml PC12 cells No effect Not tested [21]

Microscopy/Fura-2AM NCAM antibodies, 0.5 mg/ml Chick ciliary ganglion neurons No effect Not tested [39]

Microscopy/Fura-2AM Polyclonal NCAM antibodies, 0.3-1 mg/ml Mouse dorsal root ganglion neurons ↑ Not tested [21]

Microscopy/Fura-2AM Monoclonal NCAM antibodies, 0.1 mg/ml Mouse dorsal root ganglion neurons No effect Not tested [21]

Microscopy/Fura-2AM Polyclonal NCAM antibodies, 0.5 mg/ml Mouse small cerebellar neurons No effect Not tested [21]

Microscopy/Fura-2AM Monoclonal NCAM antibodies, 0.1 mg/ml Mouse small cerebellar neurons No effect Not tested [21]

Microscopy/Fura-2AM Purified NCAM from mouse brain, 10 μg/ml Mouse small cerebellar neurons ↑ Not tested [21,25]

Microscopy/Fura-2AM Recombinant fragments of NCAM
ectodomain, 0.8 μM

Mouse small cerebellar neurons ↑ Not tested [25]

Microscopy/Fura-2AM Monoclonal NCAM antibodies, 30 μg/ml Mouse cortical neurons (soma) No effect Not tested [29,30]

Microscopy/Fura-2AM Synthetic peptide ligand of ectodomain
NCAM, 54 μM

Rat hippocampal neurons ↑ Not tested [22]

Polyclonal NCAM antibodies, 1 mg/ml Rat hippocampal neurons ↑ Not tested [22]

Microscopy/ Fura-2AM or
Fluo-4AM

Synthetic peptide ligand of NCAM,
12–35 μM

Rat hippocampal neurons (soma) ↑ Nifedipine (partial inhibition) [23]

Mibefradil (partial inhibition)

Pimozide (full inhibition)

ω-conotoxin (no inhibition)

Agatoxin (no inhibition)

Loe908 (partial inhibition)

SKF-96365 (partial inhibition)

L1 Fluorimetry/Quin-2AM Polyclonal L1 antibodies, 0.4-1 mg/ml PC12 cells ↑ Not tested [21,24]

Microscopy/Fura-2AM Polyclonal L1 antibodies, 0.3-1 mg/ml Mouse dorsal root ganglion neurons ↑ Verapamil (no effect) [21]

Diltiazem (no effect)

Cd2+/Ni2+ (no effect)
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Table 1 An overview of CAMs, activation of which induces an increase in intracellular Ca2+ levels (Continued)

Microscopy/Fura-2AM Recombinant ectodomain of L1
(L1-Fc), 10 μg/ml

Rat dorsal root ganglion neurons
(growth cones)

↑a Nifedipine (full inhibition)a [37]

Conotoxin (partial inhibition)a

Microscopy/Fura-2 dextran L1 expressed by 3 T3 cells Rat dorsal root ganglion neurons
(growth cones)

No effect Not tested [31]

Whole cell patch-clamp Monoclonal L1 antibodies recognizing
glycosylated L1, 7.5-30 μg/ml

Mouse dorsal root ganglion neurons ↑ Nifedipine (full inhibition) [30]

Cd2+ (full inhibition)

Microscopy/Fura-2 AM Polyclonal L1 antibodies, 0.3-0.5 mg/ml Mouse small cerebellar neurons ↑ Verapamil (no effect) [21]

Diltiazem (no effect)

Cd2+/Ni2+ (No effect)

Fluorimetry/Quin-2AM;
Microscopy/Fura2AM

Purified L1 from mouse brain,
10 μg/ml or 0.8 μM

Mouse small cerebellar neurons ↑ Not tested [21,25,28]

Fluorimetry/Quin-2AM Monoclonal L1 antibodies recognizing FNIII
type repeats, 100 μg/ml

Mouse small cerebellar neurons ↑ Not tested [28]

Fluorimetry/Quin-2AM Monoclonal L1 antibodies recognizing Ig-
like domains I-VI, 100 μg/ml

Mouse small cerebellar neurons No effect Not tested [21,28]

Microscopy/Fura-2AM, Monoclonal L1 antibodies recognizing
glycosylated L1, 7.5-30 μg/ml

Mouse cortical neurons (soma) ↑ Nifedipine (full inhibition) [29,30]

Whole cell patch-clamp Cd2+ (full inhibition)

Np55 Microscopy/Fluo-4AM Soluble recombinant ectodomain of Np55,
15 μM

Rat hippocampal neurons ↑ Not tested [35]

(synaptic areas)

Np65 Micriscopy/Fluo-4AM Soluble recombinant ectodomain of Np65,
15 μM

Rat hippocampal neurons ↑ Not tested [34]

(synaptic areas)

Micriscopy/Fluo-4AM Syntetic peptide ligand of Np65 enplastin,
7–15 μM

Rat hippocampal neurons ↑ Not tested [34]

(synaptic areas)

NgCAM Microscopy/Fluo-3AM;
Fura-2AM

Purified chicken NgCAM, 1.2 μg/ml Neostriatal subependymal zone neurons
of adult zebra finch

↑ Nifedipine (full inhibition) [32]

ω-conotoxin (partial inhibition)

Microscopy/Fluo-3AM;
Fura-2AM

Polyclonal NgCAM antibodies, 100 μg/ml Neostriatal subependymal zone neurons
of adult zebra finch

↑ Nifedipine (full inhibition) [32]

ω-conotoxin (partial inhibition)

LAMP Microscopy/Fluo-3AM Soluble recombinant LAMP, 30 μg/ml Rat hippocampal neuron ↑ Nifedipine (full inhibition) [36]

ω-conotoxin (no inhibition)

Microscopy/Fluo-3AM Soluble recombinant LAMP, 30 μg/ml Visual cortex neurons ↑ Not tested [36]

Thy-1 Microscopy /Fura-2AM Fab fragments of monoclonal Thy-1 anti
bodies, 10 μg/ml

PC12 cells (cytosol) No effect Not tested [68]
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Table 1 An overview of CAMs, activation of which induces an increase in intracellular Ca2+ levels (Continued)

Cadherins

N-cadherin Microscopy/Fura-2AM Soluble fragments of N-cadherin purified
from brain or retina, 10 μg/ml

Chick ciliary ganglion neurons ↑ Mixture of diltiazem and
ω-conotoxin (no inhibition)

[39]

(soma, growth cones)

Whole cell voltage clamp Recombinant ectodomain of N-cadherin
(N-cadherin-Fc), 20 μg/ml

Chick ciliary ganglion neurons ↑ Not tested [41]

Microscopy/Fura-2AM Soluble recombinant ectodomain of
N-cadherin (N-cadherin-Fc), 50 μg/ml

Chick retinal ganglion cells No effect Not tested [40]

Microscopy/FFP-18-AM Soluble recombinant ectodomain of
N-cadherin (N-cadherin-Fc), 50 μg/ml

Chick retinal ganglion cells (subplasma
membrane of growth cones)

↑ Mixture of nifedipine and
ω-conotoxin (partial inhibition)

[40]

Celsr2/
Celsr3

Microscopy/Fura-2AM Soluble recombinant cadherin repeats
of Celsr2/Celsr3, 1 μg/ml

Rat hippocampal neurons ↑ Not tested [38]

Integrins

β Integrin Microscopy/Fura-2AM,
whole cell voltage clamp

RGD peptide (cGRGDSPA), 1 μM L. stagnalis CNS motoneurons ↑ Not tested [48]

(soma)

High-speed microscopy/
Fluo-4AM

Synthetic RGD peptide (RGDS), 0.5-1 μM Xenopus spinal neurons (growth cones) ↑ Not tested [44]

Microscopy/Fura-2AM Soluble Laminin, 20 μg/ml Chick ciliary ganglion neurons (soma) ↑ Mixture of diltiazem and
ω-conotoxin (no inhibition)

[39]

Microscopy/Fura-2AM Laminin, immobilized to the beads,
50 μg/ml

Chick dorsal root ganglion neurons
(growth cones)

No effect Not tested [43]

Microscopy/Fura-2AM Soluble laminin, 20 μg/ml Surgically isolated filopodia from growth cones
of chick dorsal root ganglion neurons

↑ Not tested [43]

Microscopy/Fura-2AM RGD peptide (GRGDSP), 10 μM Mouse cortical neurons (soma and neurites) ↑ Gd3+ (partial inhibition) [45]

Nifedipine (partial inhibition)

Whole cell voltage clamp Polyclonal α5β1 integrin antibodies,
10 μg/ml

Rat basal forebrain neurons ↑ Not tested [47]

Microscopy/Fura-2AM Syntetic RGD peptide (GRGDSP), 2.5 mM Rat cortical neurons ↑ Not tested [46]
aeffect observed in the presence of Ba2+ in the test solution.
CAMs, methods used to detect changes in intracellular Ca2+ levels, Ca2+ sensitive indicator used in optical recordings, ligands used to activate CAMs, cell type analyzed and subcellular localization of Ca2+ changes (if
described in the original publication), the effect of CAMs on intracellular Ca2+ levels (↑ - indicates an increase), the effect of inhibitors of Ca2+ channels on CAM-induced intracellular Ca2+ increases, and respective
references are listed in the table.
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with thapsigargin, a specific inhibitor of the sarcoendo-
plasmic reticulum Ca2+-ATPase, inhibited an increase in
intracellular Ca2+ levels in response to activation of NCAM
in cultured hippocampal neurons [23,38] and in response
to NgCAM activation in cultured forebrain neurons [32],
indicating that Ca2+ influx at the cell surface membrane is
accompanied by the release of Ca2+ from the internal
stores. Internal Ca2+ stores have also been suggested to
contribute to intracellular Ca2+ increases in response to
activation of Np55 [35].

Changes in intracellular Ca2+ levels induced by activation
of cadherins
Optical recordings of chick ciliary ganglion neurons
loaded with Fura-2AM showed that application of soluble
fragments of N-cadherin purified from brain resulted in
an increase in intracellular Ca2+ levels in growth cones
and cell bodies of neurons [39]. Increased steady state
levels of intracellular Ca2+ were also recorded in growth
cones of chick retinal ganglion cells grown on N-cadherin
and loaded with a membrane targeted Ca2+ indicator, FFP-
18AM [40]. Interestingly, when the Fura-2AM reporter
was used, steady state levels of intracellular Ca2+ were
found to be not affected by substrate coated recombinant
N-cadherin suggesting that N-cadherin influences pre-
dominantly submembrane Ca2+ levels [40]. Whole cell
voltage clamp recordings also showed that homophilic
binding of N-cadherin on neuronal membranes to soluble
N-cadherin or N-cadherin overexpressed in Chinese ham-
ster ovary (CHO) cells increases amplitudes of Ca2+

currents in ciliary ganglion neurons indicating that
homophilic interactions of N-cadherin are sufficient to
activate a cellular mechanism that regulates Ca2+ influx [41].
Similarly to members of IgSF, experiments with inhibi-

tors of various types of Ca2+ channels suggest that VDCCs
play an important role in cadherin-induced increases in
intracellular Ca2+ levels. In particular, co-application of
nifedipine and ω-conotoxin partially reduced the increase
in intracellular Ca2+ levels in response to N-cadherin
activation in retinal ganglion cells [40], suggesting that
L- and T-type VDCCs are involved in N-cadherin induced
Ca2+ influx in neurons. It should be noted, however, that
inhibitors of N- and L-type VDCCs ω-conotoxin and dilti-
azem had no significant effect to N-cadherin-induced
Ca2+ response in ciliary ganglion neurons [39].
In addition to N-cadherin, increases in intracellular Ca2+

levels have been shown to occur in response to activation
of atypical cadherins Celsr2 and Celsr3, which are highly
expressed in hippocampal and cortical neurons [42].
Optical imaging of cultured hippocampal neurons loaded
with Fura-2AM showed that intracellular Ca2+ levels
increased in response to recombinant cadherin repeats
of Celsr3 and Celsr2 with a more pronounced effect
observed in response to activation of Celsr2 when
compared to Celsr3 [38]. This increase in intracellular Ca2+

levels in response to activation of Celsr2 or Celsr3 was
inhibited by thapsigargin, indicating that intracellular
Ca2+ stores play also a role in Ca2+ increases mediated
by cadherin family members [38].

Changes in intracellular Ca2+ levels induced by activation
of integrins
Modest increases in intracellular Ca2+ levels were reported
to occur in response to exposure of neurons to natural li-
gands of integrins. Optical recordings showed that laminin
induced an increase in intracellular Ca2+ levels in growing
Fura-2AM loaded chick ciliary ganglion neurons [39], and
in the surgically isolated filopodia of growth cones of chick
dorsal root ganglion neurons [43]. Much larger increases
in intracellular Ca2+ levels were observed in response
to integrin ligand Arginine-Glycine-Aspartic acid (RGD)-
sequence containing peptides. Optical recordings of
Fluo-4AM loaded cultured Xenopus spinal neurons showed
that incubation with soluble RGD peptides elevated intra-
cellular Ca2+ levels in growth cones and increased filopodial
Ca2+ transient frequency [44]. Similar results were obtained
with adult cortical neurons, in which fibronectin appli-
cation has produced moderate increases in intracellular
Ca2+ levels while larger responses were observed in
neurons treated with RGD-containing peptides [45,46].
Increased Ca2+ currents induced by activation of integrins
using multivalent antibodies against integrins were also
observed using whole cell patch clamp recordings in
neurons acutely dissociated from the medial septum/
diagonal band nucleus of the rat [47]. Both, optical re-
cordings of Fura-2AM loaded cell bodies and whole
cell voltage clamp recordings showed that RGD peptides
increased depolarization induced increases in intracellular
Ca2+ levels in motoneurons isolated from the CNS of the
pond snail L. stagnalis [48]. It should be noted, however,
that high concentrations of RGD peptides used in some of
the previous studies [46] have also been shown to induce
integrin-independent increases in intracellular Ca2+ levels,
such as via activation the N-methyl-D-aspartate (NMDA)
receptors in an integrin-independent manner [49]. There-
fore, contribution of integrin-independent sources of
Ca2+ to overall increases in intracellular Ca2+ levels in
studies using RGD peptides cannot be fully excluded.
Integrin β-dependent increases in intracellular Ca2+ levels

were partially blocked by nifedipine and gadolinium III
(Gd3+), a broad spectrum VDCC inhibitor, in cortical
neurons [45]. However, a mixture of diltiazem and ω-
conotoxin did not affect the laminin-induced Ca2+ in-
creases in somata of chick ciliary ganglion neurons
[39]. Depletion of intracellular Ca2+ stores and inhibitors
of the ryanodine receptor (RyR) and inositol 1,4,5-triphos-
phate gated receptor (IP3R), channels through which
Ca2+ in intracellular stores is released into the cytosol,
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also reduced but did not eliminate increases in intracellular
Ca2+ levels in response to RGD-containing integrin
ligand peptides in cortical neurons [45]. Therefore, Ca2+

influx via VDCCs and Ca2+ release from internal stores
can both contribute to the elevation of intracellular Ca2+

levels in response to integrin activation.
Changes in intracellular Ca2+ levels induced by activation
of other CAMs
Changes in intracellular Ca2+ levels have also been reported
for other neuronal cell surface molecules involved in
neuronal adhesion, notably for amyloid precursor protein
(APP) and cellular prion protein (PrP). Optical recordings
of B103 rat neuroblastoma cells transfected with APP and
loaded with Fluo-4AM showed an increase in intracellular
Ca2+ levels in response to incubation with amyloid beta
(Aβ), an APP-derived toxic peptide accumulating in
brains of Alzheimer’s disease patients. Since no changes
in intracellular Ca2+ levels in response to Aβ occured
in cells non-transfected with APP, it was proposed that
binding of Aβ to APP induced Ca2+ influx in these cells
[50]. Dysregulation of Ca2+ signaling has been also found
in astrocytes from mice missing APP [51].
An increase in intracellular Ca2+ levels have been

observed in synaptosomes incubated with recombinant
PrP, while function blocking antibodies against PrP
inhibited depolarization induced Ca2+ influx via synap-
tosomal VDCCs, indicating that PrP also plays a role in
regulation of intracellular Ca2+ levels [52]. PrP dependent
Ca2+-influx has been shown to occur in response to such
ligands of PrP as laminin and stress-inducible protein 1 in
dorsal root ganglion neurons loaded with Fluo-3AM [53].
Reduced depolarization induced Ca2+ influx has been
observed using Fura-2AM and a Ca2+ indicator Calcium
Green-5N in cerebellar granule cells and hippocampal
CA1 neurons from PrP deficient mice, respectively
[54,55]. Both submembrane and intracelluar levels of
Ca2+ were affected by PrP deficiency [55].
Reduced Ca2+ currents have been also recorded in mice

deficient in α-neurexin [56], indicating that neurexin-
neuroligin adhesion complexes are also involved in
regulation of intracellular Ca2+ levels in neurons. Whether
binding of α-neurexins to neuroligins stimulates Ca2+

influx into neurons remains to be investigated.
The effect of VDCC inhibitors on neurite outgrowth induced
by activation of IgSF CAMs, cadherins and integrins
VDCCs have been shown to play a multitude of roles in
the developing and adult brain being involved in a number
of signaling pathways. The role of different types of
VDCCs in various brain functions is beyond the scope
of this review and we refer the reader to several recent
excellent reviews on this subject [57-63]. Below, we
summarise current evidence implicating VDCCs in CAM-
induced neurite outgrowth.
Analysis of studies investigating effects of various

inhibitors of Ca2+ channels on CAM-induced neurite
outgrowth is summarized in Table 2. A study by Doherty
and colleagues [64], which demonstrated that inhibitors
of L-type and N-type VDCCs inhibit NCAM-mediated
neurite outgrowth from PC12 cells in an additive manner,
was the first to show the fundamental role of VDCCs in
neurite outgrowth mediated by CAMs. NCAM-dependent
neurite outgrowth has been also shown to be partially
inhibited by the inhibitors of N-, L-, and P/Q-type VDCCs
in cultured hippocampal neurons [22,65]. Inhibitors of
L-type VDCCs also blocked exocytosis in growth cones
induced in response to NCAM activation and required
for NCAM-dependent neurite outgrowth [66]. Interestingly
and surprisingly, another study showed that inhibitors
of T-type VDCCs or inhibitors of nonselective cation
channels also completely blocked NCAM-dependent neur-
ite outgrowth in cultured hippocampal neurons [23],
suggesting that Ca2+ influx via different Ca2+ channels is
necessary to raise the overall levels of intracellular Ca2+

above the threshold required for NCAM-dependent neur-
ite outgrowth. Similarly, L1-dependent neurite outgrowth
was blocked by inhibitors of L-type (diltiazem, verapamil,
or nifedipine) and N-type (ω-conotoxin) VDCCs in rat
cerebellar neurons and PC12 cells [31,67], and partially
inhibited by nifedipine, verapamil and diltiazem in mouse
small cerebellar neurons [28]. Neurite outgrowth induced
by another member of L1 family, CHL1, was fully blocked
by application of either an inhibitor of L- or T-type
VDCCs [33]. Inhibitors of L- and N-type VDCCs have
been also shown to block neurite outgrowth induced by
activation of IgSF cell adhesion molecule Thy-1 [31,67,68].
In contrast, neurite outgrowth induced in cultured hip-
pocampal neurons grown on CHO cells overexpressing
LAMP was inhibited by blockers of L- but not N-type
VDCCs [36]. Altogether, these observations suggest that
Ca2+ influx via distinct Ca2+ channels at the cell surface is
required to induce a complete set of molecular changes
and responses required for IgSF CAM-dependent neurite
outgrowth. This scenario is consistent with the obser-
vations showing that VDCCs can activate several inde-
pendent signaling pathways in growth cones of growing
neurites [69].
Similarly to IgSF CAMs, N-cadherin-mediated neurite

outgrowth from PC12 cells has been shown to be inhib-
ited by inhibitors of L- and N-type VDCCs in an additive
manner [64]. However, inhibitors of L- and N-type VDCCs
failed to block N-cadherin-dependent neurite outgrowth
in ciliary ganglion neurons [39] indicating that other types
of Ca2+ channels are involved in cadherin-dependent
neurite outgrowth in these cells. Surprisingly, inhibitors
of L- and N-type VDCCs diltiazem and ω-conotoxin



Table 2 An overview of the effects of the inhibitors of Ca2+ channels on CAM-mediated neurite outgrowth

CAMs Cell types Inhibitors (type of Ca2+ channels) Impact on CAM-mediated
neurite outgrowth

References

IgSF

NCAM PC12 cells Diltiazem (L-type VDCCs), ω-conotoxin (N-type VDCCs) Partial inhibition [64]

Mixture of diltiazem and ω-conotoxin
(L-type and N-type VDCCs)

Full inhibition [64]

Rat hippocampal neurons Nifedipine, Diltiazem (L-type VDCC) Partial inhibition [22,23,65]

Rat hippocampal neurons ω-conotoxin (N-type VDCCs) Partial inhibition [22,65]

Rat hippocampal neurons Mixture of diltiazem and ω-conotoxin Full inhibition [65]

(L-type and N-type VDCCs)

Rat hippocampal neurons ω-agatoxin (P/Q-type VDCCs) Partial inhibition [22]

Rat hippocampal neurons Mibefradil or pimozide (T-type VDCCs) Full inhibition [23]

Rat hippocampal neurons ω-conotoxin (N-type VDCCs) No inhibition [23]

Rat hippocampal neurons Loe908 or SKF-96365 (NSCCs) Full inhibition [23]

L1-CAM PC12 cells Verapamil, diltiazem, nifedipine or ω-conotoxin
(L-type or N-type VDCCs)

Partial inhibition [67]

PC12 cells Mixture of L-type and N-type VDCCs inhibitors Full inhibition [67]

Rat dorsal root ganglion neurons ω-conotoxin or verapamil (N-type or
L-type VDCCs inhibitors)

Full inhibition [31]

Rat cerebellar neurons Verapamil, diltiazem, nifedipine or ω-conotoxin
(L-type or N-type VDCCs)

Partial inhibition [67]

Rat cerebellar neurons Mixture of L-type and N-type VDCCs inhibitors Full inhibition [67]

Mouse small cerebellar neurons Verapamil, diltiazem, or nifedipine Partial inhibition [28]

(L-type VDCCs)

CHL1 Mouse hippocampal neurons Nifedipine (L-type VDCCs) Full inhibition [33]

Mouse hippocampal neurons Pimozide (T-type VDCCs) Full inhibition [33]

Thy-1 PC12 cells Diltiazem, nifedipine, verapamil or
ω-conotoxin (L-type or N-type VDCCs)

Full inhibition [68]

LAMP Rat hippocampal neurons Nifedipine (L-type VDCCs) Partial inhibition [36]

Rat hippocampal neurons ω-conotoxin (N-type VDCCs) No inhibition [36]

N-cadherin PC12 cells Diltiazem (L-type VDCCs), ω-conotoxin
(N-type VDCCs)

Partial inhibition [64]

PC12 cells Mixture of diltiazem and ω-conotoxin
(L-type and N-type VDCCs)

Partial inhibition [64]

Chick ciliary ganglion neurons Mixture of diltiazem and ω-conotoxin
(L-type and N-type VDCCs)

No inhibition [39]

β Integrin Chick ciliary ganglion neurons Mixture of diltiazem and ω-conotoxin
(L-type and N-type VDCCs)

No inhibition [39]

CAMs and cell type analyzed, inhibitors used and the impact of the inhibitors on the CAM-dependent neurite outgrowth are described.
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had no effect on integrin-mediated laminin-induced neur-
ite outgrowth in ciliary ganglion neurons [39]. Therefore,
VDCCs required for integrin mediated neurite outgrowth
remain to be identified.

Potential mechanisms linking CAMs to Ca2+ channels
While data accumulated over the last two decades indicate
that activation of CAMs induces an increase in intracellu-
lar Ca2+ levels in neurons, the mechanisms of this increase
remain incompletely understood and probably involve a
number of signaling cascades, which link CAMs to the
sources of extra- and intracellular Ca2+ by changing the
permeability of the respective channels.
A possibility that CAMs change permeability of VDCCs

is supported by the studies on IgSF CAM L1 showing that
Ca2+ influx via VDCCs in response to L1 activation occurs
without changes in membrane voltage [37] indicating that
L1 promotes Ca2+ influx via changing VDCCs properties.
Probably the best characterized signaling pathway acti-
vated by IgSF CAMs to induce changes in intracellular
Ca2+ levels involves the fibroblast growth factor receptor
(FGFR) (Figure 1A). FGFR directly interacts with the
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Figure 1 Schematic representation of the possible mechanisms utilized by CAMs to induce an increase in the intracellular Ca2+ levels.
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VDCCs or inducing Ca2+ release from the internal stores (solid arrows). Known intermediate enzymes involved are also shown. Dashed arrows
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members of the immunoglobulin superfamily NCAM
[70,71], Nectin-1 [72], neuroplastin [35] and L1 [73,74].
It was proposed that activation of FGFR in this pathway
is followed by activation of phospholipase C (PLC), which
generates diacylglycerol (DAG), which is then converted
into arachidonic acid (AA), which then activates VDCCs
and subsequently induces Ca2+ influx [37,75]. In agree-
ment with this model, ion influx through VDCCs in
response to L1 activation was inhibited by a DAG lipase
inhibitor and blocked in sensory neurons expressing dom-
inant negative FGFR [37]. Further confirming this model,
inhibitors of FGFR and PLC also reduced an increase in
intracellular Ca2+ levels in response to NCAM activation
in cultured hippocampal neurons [23].
Inhibitors of FGFR do not fully block NCAM-mediated

increases in intracellular Ca2+ levels, suggesting that other
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factors also contribute to changes in the levels of intracel-
lular Ca2+. Src-family tyrosine kinases were implicated
since inhibitors of this family of tyrosine kinases partially
reduced an increase in intracellular Ca2+ levels in response
to activation of NCAM in neurons [23]. Src-family tyro-
sine kinases associate with and regulate the activity of
L-type VDCCs [76], and are activated by different
members of the immunoglobulin superfamily including
NCAM [77] and L1 [78] (Figure 1A). Interestingly, NCAM
and L1 act at different members of the Src-family tyrosine
kinase family, fyn and src respectively [78-80]. It remains
to be determined whether this influences the ability of
NCAM and L1 to activate different VDCCs at the cell
surface.
The G protein pathway is another pathway which may

contribute to activation of VDCCs [81,82], possibly via
inducing PLC activation [83] (Figure 1A). Pertussis toxin
(PTX), an inhibitor of the G protein, inhibited Ca2+ influx
in response to activation of NCAM in PC12 cells [24] and
in response to NgCAM in avian forebrain neurons [32].
An increase in intracellular levels of Ca2+ in response

to activation of IgSF CAMs at the cell surface has also
been linked to activation of a number of Ca2+ dependent
enzymes, such as protein kinase C (PKC) or calcium/cal-
modulin-dependent kinase II α (CaMKIIα), which are
activated by NCAM [84-87]. It is therefore possible that
PKC and CaMKII provide a positive feedback loop to
increase the Ca2+ influx via VDCCs in response to acti-
vation of NCAM (Figure 1A). Interestingly, however, the
long-term exposure of neurons to the PKC activator
phorbol 12-myristate 13-acetate inhibited L1-depenent
increases in intracellular Ca2+ levels [29,88], suggesting
that PKC may also play a role in reducing intracellular
Ca2+ levels following CAM activation.
There is also limited evidence on the interactions

between IgSF CAMs and VDCCs in neurons. Both L-
type and T-type VDCCs co-immunoprecipitated with
NCAM from the mouse brain lysates indicating that
NCAM forms a molecular complex with VDCCs [86].
In response to ligand binding, NCAM redistributes to
lipid rafts [77,89], where VDCCs are also accumulated
[86]. Whether the interactions between NCAM and
VDCCs influence the permeability of VDCCs remains
to be investigated.
IgSF CAM-activated signaling pathways can also play

a central role in inducing Ca2+ release from internal stores.
Inhibitors of PLC inhibited increases in the levels of intra-
cellular Ca2+ in response to NCAM activation, suggesting
that Ca2+ release from internal stores occurs in response
to inositol-3-phosphate produced by PLC (Figure 1A).
Additionally, activation of RyR via cAMP and PKA path-
ways may also result in Ca2+ release from internal stores
[90] (Figure 1A). This CAM-dependent activation of RyR
via cAMP and PKA pathways have been shown to have
important consequences for neuronal behavior, such as
turning of growth cones of growing neurites either to-
wards the source of Ca2+ signal, which occurs on the
L1- or N-cadherin substarte, or away from the source
of Ca2+ signal which occurs on the laminin substrate in
dorsal root ganglion neurons [90].
Similarly to IgSF members cadherins also interact with

FGFR [91-93] (Figure 1B). This observation suggests that
cadherins can activate signaling pathways which are
similar to or partially overlap with signaling pathways
activated by IgSF members to induce Ca2+ influx at the
cell surface. N-cadherin dependent regulation of VDCCs
involves, however, also a small GTPase RhoA [94,95]
(Figure 1B).
FGFR also binds to integrins [96], and may be involved

in integrin-dependent Ca2+ signalling (Figure 1C). Inhib-
ition of Src family tyrosine kinases also partially reduced
an increase in intracellular Ca2+ levels in response to acti-
vation integrins in neurons [47], suggesting that kinases of
this family are involved (Figure 1C). Integrin-dependent
activation of L-type VDCCs has also been shown to be
dependent on PKA [47], which phosphorylates VDCCs
and facilitates their function [97] (Figure 1C). Laminin-
induced integrin-mediated increases in intracellular Ca2+

levels in growth cones were also blocked by inhibitors of
PKC and CaMKIIα [43] (Figure 1C).
Integrins have also been found in a complex withVDCCs.

Integrins containing α3 subunit are linked to VDCCs
by laminin in the Torpedo electric organ synapses [98].
In cerebellar granular neurons, integrin α5β1 associates
with short transient receptor potential channel 5 (TrpC5)
[99]. TrpC channels are metabolically-activated Ca2+

channels, which are widely expressed in different tissues
and cell types playing diverse physiological functions
[100]. They also play a critical role in neuronal develop-
ment (for extensive review see [101]) and neurite out-
growth in particular [99,102]. In non-neuronal human
embryonic kidney HEK293 cells, α5β1-integrin has been
shown to associate with L-type VDCCs [103], and ligand-
dependent complex formation between β1-integrin and
L-type VDCCs has been described in mouse embryonic
stem cells [104]. Whether binding of integrins to VDCCs
and TRPCs influences permeability of these channels
remains however unknown.

Conclusion
In conclusion, a number of studies indicate that CAMs
play an important role in regulation of intracellular Ca2+

levels in neurons by acting at VDCCs and possibly other
types of Ca2+ channels in the neuronal cell surface plasma
membrane and in the intracellular Ca2+ stores. Not only
VDCCs, but also other neuronal plasma membrane Ca2+

channels such as transient receptor potential channels,
stretch-activated channels, and cyclic nucleotide-gated
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channels have been reported to play a role in neuronal
development [105-107]. Direct links between CAMs and
other types of Ca2+ channels in neurons remain however
unknown. Current data indicate that CAMs activate
Ca2+ channels by inducing intracellular signaling cascades
which can either activate or remove inhibition of Ca2+

channels to induce an increase in intracellular Ca2+ levels.
It remains to be investigated whether formation of the
molecular complexes between CAMs and Ca2+ channels
directly influences the activity of the latter.
Most of the previous work was performed using artificial

stimulation protocols by applying soluble ligands in the
culture medium and monitoring bulk changes in intracel-
lular Ca2+ levels. Better imaging technologies which
appeared recently may help to investigate the dynamics of
local CAM-dependent Ca2+ changes occurring during
cell-to-cell contact formation, and particularly during
synapse formation. A combination of such technologies
with biochemical analysis and optical imaging of the
synapse enriched cytoskeleton components and enzymes
may provide valuable information about the mechanisms
of the molecular rearrangements accompanying contact
maturation. The development of genetically encoded
Ca2+ reporters [108-111] with a better defined subcellular
localization as compared to chemical dyes used in previ-
ous studies may also allow monitoring intracellular Ca2+

levels in CAM-enriched membrane microdomains in
different neuronal compartments, which is a promising
new direction for further research.
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