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Mathematical modeling of apoptosis
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Abstract

Apoptosis is a form of programmed cell death, which is fundamental to all multicellular organisms. Deregulation of
apoptosis leads to a number of severe diseases including cancer. Apoptosis is initiated either by extrinsic signals
via stimulation of receptors at the cellular surface or intrinsic signals, such as DNA damage or growth factor
withdrawal. Apoptosis has been extensively studied using systems biology which substantially contributed to the
understanding of this death signaling network. This review gives an overview of mathematical models of apoptosis
and the potential of systems biology to contribute to the development of novel therapies for cancer or other
apoptosis-related diseases.
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Introduction
Apoptosis is a certain form of programmed cell death
(PCD) playing a key role in the development and homeo-
stasis of multicellular organisms. Defects in the apoptotic
pathway can lead to multiple diseases, such as neurode-
generative diseases, autoimmune diseases, AIDS and can-
cer [1]. In mammalian cells apoptosis can be induced by
either extra- or intracellular stimuli, triggering the extrin-
sic or intrinsic pathway, respectively [2] (Figure 1). The ex-
trinsic pathway is triggered by the stimulation of death
receptors (DR) on the plasma membrane. DR stimulation
leads to the formation of the death-inducing signaling
complex (DISC) and initiator caspase-8 activation [3]. The
intrinsic pathway can be triggered by chemotherapeutic
drugs, irradiation or growth factor withdrawal and results
in mitochondrial outer membrane permeabilization
(MOMP), release of cytochrome C into the cytosol and
procaspase-9 activation [4]. Both pathways eventually lead
to the activation of effector caspases and the apoptotic
phenotype including chromatin condensation, nuclear
fragmentation, membrane blebbing, cell shrinkage and
formation of apoptotic bodies [5-7]. Due to its extreme
signaling outcome, i.e. life or death of the cell, apoptosis
has to be tightly controlled at multiple levels and by vari-
ous proteins. In order to better understand those signaling
decisions numerous systems biology studies of apoptosis
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have been conducted. Systems biology is a relatively
new field with the ultimate goal to understand bio-
logical processes in their entirety. Systems biology is
based on the combination of experimental procedures
with mathematical modeling that is supported by com-
puter programs [8-10].
In this review we give an overview of systems biology

approaches in apoptosis signaling with a focus on
DR-induced apoptosis. Especially, we address a number
of recent studies that provided new insights into apop-
tosis regulation since previous reviews have been writ-
ten [11-14]. These studies include the determination of
the DISC stoichiometry [15,16], molecular determinants
of type I/type II apoptotic signaling [17], novel statis-
tical methods of parameter estimation and model dis-
crimination of cell death models [18], and using
mathematical modeling of apoptosis for the develop-
ment of novel anticancer therapies [19-21].
Death receptor-induced apoptosis
DRs belong to the tumor necrosis factor receptor (TNF-R)
family of proteins and initiate apoptosis upon stimulation
with their respective ligands. All DRs are characterized by
extracellular cysteine rich domains (CRD) as well as an
intracellular approximately 80 amino acid long motif, the
death domain (DD) [2,22]. CD95 (Fas/APO-1), TNFR1,
TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2 comprise
the best characterized DRs [2,22,23]. Other DRs are DR3
and DR6, EDA-R and NGF-R [2,22,24]. The CD95- and
TRAIL-R-mediated pathways of apoptosis are among the
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Figure 1 Overview of apoptosis pathways. Apoptosis can be induced by extracellular (extrinsic) or intracellular (intrinsic) stimuli. The extrinsic
pathway is initiated via stimulation of DRs, e.g. CD95 or TRAIL-R, on the cell surface. Stimulation of CD95 results in the recruitment of different
proteins including FADD, procaspase-8, procaspase-10 and c-FLIP proteins which form the death-inducing signaling complex (DISC). Procaspase-8
is activated at the DISC which is regulated by c-FLIP proteins. Active caspase-8 cleaves and activates effector caspase-3 and −7 and/or the Bcl-2
protein Bid. The truncated form of Bid (tBid) translocates to the mitochondria, triggering outer membrane permeabilization (MOMP) and the
release of cytochrome c, as well as other pro-apoptotic proteins into the cytosol. Cytochrome c is involved in the formation of the apoptosome
and procaspase-9 activation. Procaspase-9 also activates procaspase-3 and −7 resulting in massive caspase-3 activity and cell death. In CD95
signaling two different cell types are distinguished. Type I cells efficiently activate caspase-8 and subsequently effector caspases without requiring
amplification through tBid-mediated MOMP. Type II cells, however, form less DISC and therefore rely on Bid cleavage and the intrinsic
amplification loop. Additionally, CD95 can initiate non-apoptotic pathways, such as NF-κB or MAPK and cell survival. The intrinsic pathway is
activated by various intracellular stimuli, such as DNA damage or growth factor withdrawal resulting in MOMP and subsequent effector caspase
activation. Apoptosis is tightly controlled at the mitochondria by the Bcl-2 family of proteins.

Schleich and Lavrik Cell Communication and Signaling 2013, 11:44 Page 2 of 7
http://www.biosignaling.com/content/11/1/44
best studied signaling pathways and have been exten-
sively used in systems biology studies. Binding of the
natural CD95 ligand (CD95L) or agonistic antibodies,
e.g. anti-APO-1 [25], to CD95 initiates the signaling cas-
cade. A first event in DR signaling is the recruitment
of the adapter protein Fas-associated death domain
(FADD) to oligomerized receptors [3] (Figure 1). Subse-
quently, initiator caspases-8 and −10 and cellular
FLICE-inhibitory proteins (c-FLIP) are recruited to the
complex, that is named DISC [26,27] (Figure 1). Interac-
tions between the molecules in the DISC are mediated
by homotypic interactions. FADD is recruited via DD
interactions with the receptor, caspase-8/10 and c-FLIP
are recruited via death effector domain (DED) interac-
tions with FADD [28]. Procaspase-8 contains two DEDs
in its N-terminal part followed by a large (~20 kDa) and
small (~10 kDa) catalytic subunit [26]. In the DISC
procaspase-8 dimerizes, allowing the formation of an
active site and activation of its catalytic activity
[7,26,29-33]. The procaspase-8 dimer is further stabi-
lized by cleavage between the large and small subunits
[7,33]. Subsequent cleavage between the prodomain and
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the large subunit releases active caspase-8 into the cyto-
sol and initiates the apoptotic cascade [26]. Caspase-8
activation is regulated by c-FLIP of which three
isoforms are known: long (c-FLIPL), short (c-FLIPS) and
Raji (c-FLIPR) [6,34-37]. They have structural simila-
rities to procaspase-8. All three c-FLIP isoforms have a
tandem DED at their N-terminus [38]. The long iso-
form, c-FLIPL, also has catalytically inactive caspase-like
domains (p20, p12) [37,38]. Both short isoforms block
procaspase-8 processing and activation at the DISC
[6,27]. The long form, c-FLIPL, however, can accelerate
procaspase-8 processing at low and intermediate con-
centrations, but inhibits it upon high concentrations
[27,29,39]. Active caspase-8 further cleaves and acti-
vates the effector caspases-3 and −7 resulting in cell
death [2] (Figure 1). In addition, it cleaves the pro-
apoptotic Bcl-2 protein Bid which then translocates to
the mitochondria triggering MOMP and amplification
of the extrinsic signal [40,41]. In CD95 signaling two
types of cells are distinguished [2] (Figure 1). Type I
cells form high amounts of DISC allowing efficient
procaspases-8 and −3/7 activation without requiring
amplification through the cleavage of Bid [42]. Type II
cells on the other hand activate caspase-8 at the DISC
less efficiently and rely on the Bid-cleavage-mediated
amplification loop [42]. Thus, type I cells still die when
MOMP is inhibited, but type II cells do not. Apoptosis
is further regulated by two other protein families. Inhib-
itors of Apoptosis proteins (IAP), with currently six
human members: XIAP, c-IAP1, c-IAP2, NAIP, Bruce
and survivin, can directly inhibit caspases [43]. The IAP
family members share a conserved sequence motif,
the baculoviral IAP repeat (BIR) domain, which is re-
quired for their function [7,44]. The family of Bcl-2 pro-
teins has crucial functions in regulating MOMP with
pro-apoptotic (e.g. Bax, Bak, Bid) and anti-apoptotic
(e.g. Bcl-2, Bcl-XL) members [40,45]. Bcl-2 family mem-
bers are characterized by the presence of the so-called
Bcl-2 homology domain (BH1-BH4) [40,45].
Although best known as a ‘death receptor’, there is in-

creasing evidence that CD95 also has functions in non-
apoptotic signaling, such as tumor growth and invasion,
proliferation and necroptosis [46-52]. It has been shown
by numerous groups that CD95 activates NF-κB, a cen-
tral mediator of inflammation, and MAPK signaling
[46,53-59] (Figure 1).

Mathematical formalisms used in systems biology
In systems biology experimental approaches are com-
bined with mathematical modeling to understand com-
plex behavior of cells and organisms. Experimental
approaches and mathematical models are connected
through a cyclic workflow [9]. Experimental data is used
as input for mathematical models that, in turn, generate
biological predictions. These predictions are then again
verified by experimental approaches, thus completing the
cycle. Experimental approaches, used in systems biology
of apoptosis so far, include quantitative Western Blot, cell
death assays, single cell analysis and mass spectrometry.
Numerous different modeling formalisms can be used

to describe cellular systems and have been used, in par-
ticular, for modeling apoptosis. We shall briefly present
the major modeling formalisms below.
In Boolean modeling protein-protein interactions are

described qualitatively and kinetics of individual protein
interactions are not taken into account. The signaling
network is represented as a graph, signaling molecules
are represented by the nodes and interactions by edges
[60]. Each node can be either in an ‘off ’ or ‘on’ state, rep-
resented by 0 and 1, respectively [60]. The state of each
node depends on the state of its input nodes governed
by logic rules (so-called operators or gates). Common
boolean rules are the AND, OR and NOT operators. The
AND operator will switch a node to the ‘on’ state only if
all input nodes were in the ‘on’ state. On the contrary,
an OR operator will switch a node to the ‘on’ state if one
of the input nodes is in the ‘on’ state. The NOT operator
is only used together with the other operators and is
true if the corresponding input node is in the ‘off ’ state
[60]. Since each signaling component of the network can
be only in two different states, boolean modeling cannot
simulate temporal dynamics of protein concentrations.
In order to describe the quantitative temporal dynamics

of a signaling network, ordinary differential equations
(ODE) are used in systems biology [61,62]. ODE modeling
assumes that the signaling molecules are highly abundant
in the cell and well mixed. Therefore, stochastic effects
and diffusion are neglected. In ODEs cellular reactions are
usually described by mass-action kinetics [61-64] (see
chemical textbooks for further general reading). A chem-
ical reaction

Aþ B⇌
k1
k2 C

can be transformed into the following system of coupled
ODEs.

d A½ �
dt

¼ d B½ �
dt

¼ −k1⋅A⋅Bþ k2⋅C

d C½ �
dt

¼ k1⋅A⋅B−k2⋅C

Such systems of ODEs can be solved numerically using
standard computer software (e.g. Matlab). Usually dynam-
ical pathway models include a large number of kinetic pa-
rameters which are not known and mostly cannot be
measured experimentally. Therefore, parameters are esti-
mated based on experimental data, e.g. kinetics of protein
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concentrations in the pathway of interest. Parameters can
be estimated using the method of least squares [61]. Due
to the high number of kinetic parameters compared to lit-
tle experimental data, model fitting can yield multiple par-
ameter values that can describe the data equally well. In
order to test the robustness of a model sensitivity analysis
is applied [61,63]. Furthermore, statistical methods can be
used for parameter estimation of ODE models and are es-
pecially useful for discrimination between different model
topologies with equally good fit to the same dataset [18].
ODEs assume homogenous distribution of interacting
molecules and neglect spatial information. In order to take
into account diffusion of molecules partial differential
equations (PDEs) can be used [63].
Contrary to deterministic models, e.g. ODEs, stochastic

models are based on the likelihood that two molecules
interact. Another modeling approach is agent-based mod-
eling [65-69]. This approach is a rules-based modeling ap-
proach in which each component of the model system is
represented by an agent with a certain behavior based on
its biological functions.

Mathematical modeling of apoptosis
Mathematical modeling of apoptosis signaling reaches
back more than a decade ago when Fussenegger et al.
generated the first model of apoptosis [70]. This model
was based on ODEs and described the apoptotic path-
way both by extrinsic and intrinsic signals, but was not
based on experimental data. The entirely theoretical
model by Fussenegger et al. was followed by a number
of ODE-based models supported by experimental data.
The first model of this type described on the quantitative
level the extrinsic apoptotic pathway, namely CD95 sig-
naling [71]. This first experiment-based model of apop-
tosis initiated many more ODE-models of both the
extrinsic and intrinsic pathways that appeared within the
last decade. In addition, bistability of DR-induced apop-
tosis depending on initial procaspase-8 molecule num-
bers was demonstrated using an ODE model [72,73].
Besides ODE-based models other approaches have been
applied to apoptosis modeling, including boolean model-
ing [74-77], Bayesian modeling [78], petri nets [79], cel-
lular automata [80,81] and agent-based modeling [15].
Various mathematical formalisms applied to apoptotic

signaling allowed to address a number of biological
questions, e.g. how the switching between life and death
in the cell occurs. In particular, it was possible to under-
stand the contribution of different apoptosis regulators
to apoptosis induction. For instance, considering extrin-
sic apoptosis signaling one might ask what the cell death
stage-limiting steps are: DISC formation, activation of ef-
fector caspases, or cleavage of the caspase substrates. By
combining quantitative Western Blot with a structured
information ODE model our group revealed a threshold
mechanism in CD95-initiated apoptosis which could also
be verified experimentally [71,82]. In this work it was
shown that activation of caspase-8 at the DISC is a
stage-limiting step in extrinsic apoptosis in type I cells.
Furthermore, it was shown that efficient DISC formation
is the central control point of extrinsic apoptosis and the
amount of the caspase-8 inhibitors c-FLIP in the cell is
the major factor defining life/death decisions.
Similar questions, e.g. what the major regulators are and

how the threshold is defined, were addressed using ODE
modeling of intrinsic apoptosis. Models of the intrinsic
apoptotic pathway demonstrated a crucial role of XIAP in
caspase activation via the apoptosome [73,83]. Rehm et al.
demonstrated that XIAP inhibits caspase activation only
above a certain threshold, but enhances it at low concen-
trations [83]. Based on this model a simulation tool called
APOPTO-CELL is available online [84].
The fascinating insights into the molecular mechanisms

of apoptotic signaling were achieved by the combination
of single cell analysis with mathematical modeling. For in-
stance, spatio-temporal activation of caspases in TRAIL-
induced apoptosis was understood in type II cells. It was
shown that initiator caspases are active in the pre-MOMP
phase while effector caspases are only active after MOMP
[85]. In another model the same group analyzed cell-to-cell
variability upon TRAIL stimulation [86]. They compared
sister cells using time-lapse microscopy and FRET-based
caspase-activity reporters and found that differences in sig-
naling outcome are due to variations in protein levels.
Mathematical modeling of apoptosis also allowed deter-

mining and supporting quite some molecular paradigms.
For a while the differences between type I and type II cells
was an issue of debate. In a recent study Aldridge et al.
studied the molecular determinants of type I vs. type II
cells and demonstrated that the ratio of caspase-3 to XIAP
is one of the major determinants of type I/type II decisions
[17]. Another question that was unclear for a number of
years is whether c-FLIPL could indeed activate caspase-8
at the DISC. Only mathematical modeling was capable to
predict the exact concentrations of the DISC components
when c-FLIPL could play an activating role [39]. These
predictions were successfully confirmed by experimental
data. Finally, a new mechanism of apoptosis signaling has
been discovered recently using biochemical analysis, mass
spectrometry and mathematical modeling. Namely, our
group and the group of Marion MacFarlane determined
the stoichiometry of the CD95 and TRAIL-R DISCs and
found that caspase-8 outnumbers FADD at the DISC
forming the so-called caspase-8 chains [15,16]. Using
mathematical modeling we further analyzed the dynamics
of the chain formation and found that the DISC is a very
dynamic system and its stoichiometry, i.e. length of the
caspase-8 chains, is defined by the strength of CD95 stimu-
lation [15]. This finding adds another layer of complexity in
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caspase-8 activation and regulation of apoptosis in extrinsic
signaling.
The non-apoptotic signaling features of CD95 have

gained increasing interest, and, consequently, the concept
of switching the phenotypes between apoptotic and non-
apoptotic signaling also attracted the attention of systems
biology research. To address the switch between apop-
tosis, necroptosis and survival Calzone et al. developed a
Boolean model of TNF-R and CD95 signaling [77]. This
was the first model of necroptosis that described the
switch between necroptosis, apoptosis and survival as well
as established the major molecules responsible for
necroptosis induction. The other challenging question is
how stimulation of DRs could also result in the induction
of non-apoptotic pathways, such as NF-κB and MAPK
pathways. Our ODE models of CD95-induced apoptosis
found that DISC formation also leads to the induction of
NF-κB and MAPK pathways [55,57]. Intriguingly, caspase-
8 activity and the concentration of c-FLIP play an import-
ant role in NF-κB and MAPK induction [55,57]. Thus, our
systems biology studies have demonstrated that the
amounts of the main regulators of DR-induced apoptosis
procaspase-8 and c-FLIP at the DISC also play a key role
in the induction of non-apoptotic signaling.
After creating the basic models of the apoptosis path-

ways, currently systems biology of cell death is entering a
next very important phase. The central question now is
how defects in apoptotic networks are connected to vari-
ous diseases and how apoptosis models could be used to
develop better treatments. Especially important are oppor-
tunities that are provided by systematic consideration of
the apoptotic network and possible connections to per-
sonalized medicine.
Apoptosis plays a central role in development and pre-

vention of apoptosis is a hallmark of cancer. Despite ex-
tremely detailed understanding of the apoptotic pathway
little progress has been made with respect to cancer ther-
apy. Chemotherapy, radiotherapy and surgery remain the
best treatment options so far. Systems biology studies of
apoptosis may play an important role in the development
of novel anticancer therapies. Indeed, recent studies from
different groups used mathematical models of apoptosis
and applied them to cancer cells [19-21]. This allowed
finding out the major determinants of apoptosis resistance
in cancer cells, which, in turn, provides a basis for the de-
velopment of novel anti-cancer therapies targeting key
components of the apoptotic pathway [19-21]. These first
studies show ample opportunities that systems biology of
the apoptotic network might provide with respect to cancer
treatment and open new avenues for drug development.

Conclusions
Systems biology of apoptosis in the last decade has under-
gone a tremendous development from the first theoretical
model of apoptosis to models directly connecting defects
in apoptosis networks to cancer. The next issues to
address are the dynamics of apoptosis networks and cross-
talk to other signaling pathways at the level of the cell,
tissue and organism. A very ambitious question to address
is what the role of the apoptotic network is in the diseases
of the century e.g. ageing and metabolic diseases. Future
challenges also involve further development of models of
diseases associated to defects in apoptosis and successful
development of anti-cancer therapies based on systems
biology models.
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