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Abstract

A central goal of systems biology is the construction of predictive models of bio-molecular networks. Cellular
networks of moderate size have been modeled successfully in a quantitative way based on differential equations.
However, in large-scale networks, knowledge of mechanistic details and kinetic parameters is often too limited to
allow for the set-up of predictive quantitative models.
Here, we review methodologies for qualitative and semi-quantitative modeling of cellular signal transduction
networks. In particular, we focus on three different but related formalisms facilitating modeling of signaling
processes with different levels of detail: interaction graphs, logical/Boolean networks, and logic-based ordinary
differential equations (ODEs). Albeit the simplest models possible, interaction graphs allow the identification of
important network properties such as signaling paths, feedback loops, or global interdependencies. Logical or
Boolean models can be derived from interaction graphs by constraining the logical combination of edges. Logical
models can be used to study the basic input–output behavior of the system under investigation and to analyze its
qualitative dynamic properties by discrete simulations. They also provide a suitable framework to identify proper
intervention strategies enforcing or repressing certain behaviors. Finally, as a third formalism, Boolean networks can
be transformed into logic-based ODEs enabling studies on essential quantitative and dynamic features of a signaling
network, where time and states are continuous.
We describe and illustrate key methods and applications of the different modeling formalisms and discuss their
relationships. In particular, as one important aspect for model reuse, we will show how these three modeling
approaches can be combined to a modeling pipeline (or model hierarchy) allowing one to start with the simplest
representation of a signaling network (interaction graph), which can later be refined to logical and eventually to
logic-based ODE models. Importantly, systems and network properties determined in the rougher representation
are conserved during these transformations.

Keywords: Interaction graphs, Logical models, Boolean models, Signal transduction, Qualitative modeling,
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Introduction
Cellular signaling is made up of complex networks of
interacting molecules that are tightly interconnected and
regulated. In order to gain an integrated understanding
of these networks, systems biology approaches combin-
ing mathematical and computational methods with ex-
perimental data are becoming increasingly important.
To account for the different quality of information that
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is available for a network under study—the available ex-
perimental data might provide a detailed quantitative
knowledge or just a qualitative view, and detailed prior
knowledge on the network topology might or might not
exist—modeling formalisms of different levels of com-
plexity have been developed over the last years [1,2].
Physicochemical modeling approaches, typically net-

works of differential equations, provide a detailed de-
scription of the biochemical processes that is based on
physical and chemical theory [3]. Most widely used are
sets of coupled ordinary differential equations (ODEs)
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that describe the system's development over time using
mass-action kinetics for the rates of production and con-
sumption of the biomolecular species (e.g., [4]). This
type of modeling requires sufficient knowledge of bio-
logical mechanisms and kinetic parameters, what limits
its applicability to small and well-characterized
networks.
In contrast, qualitative modeling approaches are pri-

marily based on the network structure and do not re-
quire information on the kinetic parameters. This makes
them generally applicable to large-scale networks. The
class of qualitative modeling approaches comprises vari-
ous formalisms of different complexity. Graph models
representing biological species as nodes and interactions
between the species as edges are arguably the simplest
mathematical description of signaling networks. They
have mainly been applied to study global topological
properties of networks containing up to several thou-
sand proteins [5,6]. More refined qualitative modeling
approaches include constraint-based modeling [7], Petri
Figure 1 Modeling pipeline: from qualitative information to quantitat
denotes a positive (activating) edge, a red blunt-ended line a negative (inh
red branch of a hyperedge means that the logical value of the input node
negated. Illustration of the pathway scheme reproduced courtesy of Cell Si
nets [8,9], and logical modeling [10-12]. As graph
models, these frameworks solely rely on the network
structure, yet they enable the analysis of important func-
tional properties of large-scale signal transduction net-
works such as input–output relationships, feedback
loops, or signal transfer routes, and they also allow cer-
tain predictions, for instance, regarding the expected
qualitative response to perturbations. Besides static in-
vestigations, Petri nets and logical models enable to de-
rive qualitative properties of the system’s dynamics by
means of discrete dynamic modeling [9,11]. Other
parameter-free approaches also aim at gaining insights
into the qualitative dynamic properties of the system,
however, in the context of ODE systems [13-17]. A typ-
ical question that is tackled by these approaches is
whether a given ODE network structure is able to ex-
hibit, for some parameter values, a certain qualitative be-
havior such as multistationarity, oscillatory behavior, or
non-monotonicity. Although these approaches are
parameter-free, a detailed knowledge of the involved
ive models. A black arrow in the interaction graph representation
ibiting) edge. In the hypergraph representation of the logical model, a
is negated, a black branch (or black edge) that the input value is not
gnaling Technology [19].
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reactions, including mechanistic details, is usually re-
quired, whereas Petri nets and logical models are based
on a more abstract understanding.
Within this work, we review three modeling formal-

isms for the description of cellular signaling networks
that are of different complexity (Figure 1). As represen-
tatives of graph models, interaction graphs capture pair-
wise relationships between biological compounds. We
will describe applications of interaction graphs to cellu-
lar signaling networks such as the identification of sig-
naling pathways and feedback loops, and the analysis of
global interdependencies useful to check the consistency
of experimental data with a given network structure. In
logical models, the information that is contained in an
interaction graph is extended by rules defining how the
discrete state of a node is governed by the states of other
nodes. This enables to compute the qualitative input–
output behavior of a signaling pathway under study as
well as the identification of intervention strategies. Fur-
thermore, logical models can be used to study the quali-
tative system dynamics. In order to come up with
models that are able to explain and predict quantitative
and dynamic system behavior, logical models can be
transformed to ODE models in a straightforward way. In
contrast to physicochemical ODE models that are based
on mechanistic descriptions of the biochemical pro-
cesses, these logic-based ODE models can be seen as
continuous representation of qualitative biological know-
ledge [18]. As such, they can also be derived for path-
ways where a detailed mechanistic knowledge is missing
and ODE modeling using mass-action kinetics is
infeasible.
Figure 2 Interaction graph and logical model of the EGF/NRG1 netwo
(A) Interaction graph of the EGF/NRG1 example model. Black arrows indica
(inhibiting) edges. (B) Hypergraph representation of a Boolean model with
operations, that is, a hyperedge with n inputs is represented as n arrows po
ended lines indicate that the respective input value is negated. Several arro
Interaction graphs, logical models and logic-based
ODE models are tightly linked since every logical model
has an underlying interaction graph (from which it was
constructed) and every logic-based ODE an underlying
logical model and thus also a corresponding interaction
graph (Figure 1). Thus, these three approaches can make
up a “modeling pipeline”: qualitative biological know-
ledge available in the literature or in pathway databases
can often directly be represented in interaction graphs.
The transformation to logical models enables discrete
simulations. Finally, the derivation of logic-based ODEs
enables one to confront qualitative biological knowledge
with quantitative and time-resolved experimental data.
Importantly, systems and network properties are con-
served when moving from the rougher to the more com-
plex model description and remain thus valid in the
refined model.

Example network: EGF and NRG1 signaling
Throughout this work, we will use a small example net-
work of epidermal growth factor (EGF) and neuregulin-1
(NRG1; also known as heregulin) signaling (Figure 2)
that was manually derived from a large-scale network
describing signaling through ErbB receptors [20]. As
members of the EGF-related peptide growth factors,
EGF and NRG1 bind to receptors of the ErbB receptor
family leading to the formation of homo- and
heterodimers (see, e.g., [21]). EGF binds specifically to
ErbB1, also known as EGF receptor (EGFR), whereas
NRG1 binds to ErbB3 and ErbB4 [21]. The fourth ErbB
receptor, ErbB2, does not bind any ligand of the EGF
family, but can be regarded as a non-autonomous
rk example. Both models were set up and visualized in Promot [26].
te positive (activating) edges, red blunt-ended lines negative
underlying interaction graph given in (A). Blue circles denote AND
inting into a blue circle and one arrow pointing out of it. Red blunt-
ws pointing into one node are OR connected.
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amplifier of ErbB signaling [22]: it is the preferred
heterodimerization partner of the other ErbB receptors
and as such impairs the formation of ErbB1/ErbB3,
ErbB1/ErbB4, and ErbB3/ErbB4 heterodimers [23,24].
ErbB receptor signaling has a large impact on various
cellular responses such as proliferation, survival, devel-
opment and growth [22,25].
The main purpose of the EGF/NRG1 example network

is to illustrate the presented methods; thus, we tried to
keep the network simple while still being biologically
plausible. Of the different downstream signaling path-
ways, we focused on two major ones, the MAP kinase
signaling cascade activating ERK, and the PI3 kinase sig-
naling pathway activating Akt. Both pathways are de-
scribed in a compressed way, neglecting some of the
intermediate species. Furthermore, we did not consider
all the various feedback and crosstalk mechanisms that
have been reported for both pathways (see, e.g., [27]),
but focused on some exemplary ones. In order to keep
the activation mechanisms at the receptor level simple,
ErbB4 was not included and only three out of the four
functional dimers formed by ErbB1, ErbB2 and ErbB3
are part of the network. Including ErbB3 rather than
ErbB4 was motivated by the fact that ErbB3 can directly
activate PI3K, whereas ErbB4 can only indirectly activate
PI3K via Gab1 and thus shows a similar signaling re-
sponse as ErbB1 (see, e.g., [22]).

Review
Interaction graphs
Cellular signaling networks can intuitively be described
as signed directed graphs, known as interaction graphs
(sometimes also called influence graphs or regulatory
graphs). The nodes in these graphs represent the compo-
nents of signaling such as hormones, receptors, protein
kinases and phosphatases, adaptor proteins, transcrip-
tion factors, second messengers, or genes. In a signal
transduction network, these components are connected
by activating and deactivating mechanisms, each of
which passes the signal from one species to another. Ex-
amples of these include chemical modifications such as
phosphorylations, triggering of conformational changes,
and colocalizations. These mechanisms are represented
as edges in the interaction graph: each edge connects a
pair of nodes and is directed from the species passing
the signal to the species receiving it. Furthermore, an as-
sociated sign indicates whether the edge represents an
activating (positive sign) or deactivating mechanism
(negative sign). Formally, an interaction graph G consists
of a set V =V(G) of nodes (or vertices), a set A =A(G) of
edges (or arcs) that are defined as ordered pairs of nodes,
and a sign mapping σ: A(G)→ {+,−}. Given an edge (u,v)
pointing from node u ∈ V to node v ∈ V, u is called tail
and v head of the edge.
Interaction graphs are often represented as “pathway
cartoons” and can thus be seen as the prevalent formal-
ism describing signaling networks in the biological lit-
erature. They are also commonly used to represent
signaling pathways in pathway databases such as
Reactome [28], KEGG [29], WikiPathways [30], or in
public repositories provided, for example, by BioCarta
[31], or Cell Signaling Technology [19].
Graph models such as interaction graphs can be used

to study global topological network properties (such as
degree distributions) and thus to unravel common de-
sign principles of biological networks (reviewed in
[6,32,33]). For instance, many biological networks were
found to have a scale-free topology, where the majority
of nodes has a low degree, while still a relatively large
number of nodes (compared to random networks) is
connected to many compounds. A well-known example
for such a highly connected “hub” is the tumor suppres-
sor protein p53 [34]. In addition to these statistical fea-
tures characterizing the overall architecture of a given
biological network, an interaction graph encodes other
important properties highly relevant for understanding
basic network functions.
Before discussing those properties (see next section), it

is important to realize that interaction graphs are often
implicitly contained as underlying network structure in
models of more complex formalisms. In particular, this
holds true for Boolean and ODE models. For example,
given an ODE system, the entries of its Jacobian matrix
(i.e., the partial derivatives of the state variables) reflect
pairwise influences between species. Therefore, we can
associate with the system an interaction graph that is de-
fined on the basis of the signs of these entries [35]. Ac-
cordingly, functional properties derived from interaction
graphs are directly relevant for all models having this
graph as underlying structure [17]. The relation between
Boolean models and interaction graphs will be discussed
later.

Paths and cycles in interaction graphs
Feedback loops are sequences of edges by which compo-
nents can influence their own activation level [36]. They
are found in almost all known signaling pathways and
have been shown to have major impacts on network dy-
namics and to mediate important biological functions
[37,38].
Formally, a feedback loop is a directed cycle and is de-

fined as alternating sequence of nodes and edges starting
and ending at the same node, while visiting no node (ex-
cept the start/end node) twice. Thus, a feedback loop is
a sequence v1 a1 v2 a2 … vk-1 ak-1 vk such that (i) node v1
is equal to node vk, (ii) the tail of edge ai is node vi, and
the head of edge ai is node vi+1, and (iii) all nodes v1,…,
vk-1 are distinct. Depending on the parity of the number
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of negative edges the sequence contains, a feedback loop
is said to be negative (odd number of negative edges) or
positive (zero or even number of negative edges).
Equivalently, the sign of a feedback can also be deter-
mined by multiplying the sign of all edges making up
the loop.
The interaction graph representation of the EGF/

NRG1 network (Figure 2A) contains two feedback loops:
(i) the sequence PI3K→ PIP3→Gab1→ PI3K forms a
positive feedback loop as all edges are positive, and (ii)
the sequence SOS→ Ras→ ERK→ SOS forms a nega-
tive feedback loop as it contains one negative edge
(ERK→ SOS).
Positive feedback loops may cause a discontinuous

switch in the cellular response [37] as has been, for ex-
ample, shown in frog oocytes, where a positive feedback
loop (in combination with ultrasensitivity) triggers the
conversion of a continuous stimulus (progesterone) into
an all-or-none biological response (oocyte maturation)
[39]. A bistable behavior like this is in general associated
with positive feedback loops, and, indeed, it was shown
that a system that displays more than one steady state—
both in a Boolean or ODE model representation—must
contain a positive feedback loop in its interaction graph
[40-46].
Negative feedback loops stabilize the system's response

and are a common design principle of biochemical sys-
tems to achieve homeostasis, that is, to keep the (activa-
tion) level of certain components at an optimal value
[36-38,47]. They have also been shown to create oscilla-
tions, and, given an ODE model, just as a positive feed-
back loop in the associated interaction graph is
necessary for multistationarity, a negative feedback loop
is a prerequisite for an oscillatory behavior [42-44,48].
Although sustained biochemical oscillations can be gen-
erated by a single negative feedback loop, as, for ex-
ample, in NF-κB signaling [49], they often arise from
motifs containing both positive and negative feedbacks
[38,47]. An example is that of periodic calcium spikes as
they have been observed after growth factor or hormone
stimulation [50].
Thus, the identification and investigation of feedback

structures might help to understand core design princi-
ples of non-trivial dynamic behavior.
Perhaps the most direct questions that can be an-

swered with an interaction graph at hand are related to
signaling paths between pairs of nodes. A signaling path
from node v1 to node vk is a sequence v1 a1 v2 a2 … vk-1
ak-1 vk, where all nodes v1,…,vk are distinct, and edge ai
points from node vi to node vi+1.. Just as for feedback
loops, a path is negative if it contains an odd number of
negative edges, else positive. We will refer to v1 as the
source node and vk as the target node of the signaling
path.
First of all, one might be interested in identifying all
different signaling routes that exist between a given pair
of nodes, for example, the different paths through which
a ligand influences the activity of a transcription factor.
Signaling paths reveal how the often well-known local
interactions are combined to network-wide influences. If
applied in a systematic manner, this enables one to clas-
sify a source species with respect to a target species, de-
pending on the sign(s) of the signaling path(s)
connecting them [10]: (1) if all paths from the source to
the target node are positive, the source is an activator of
the target; (2) if all paths from the source to the target
node are negative, the source is an inhibitor of the tar-
get; (3) if there exist positive as well as negative paths
from the source to the target node, the source is said to
be an ambivalent factor of the target; and (4) if there ex-
ists no path from the source to the target node, the
source has no influence on the target and is therefore
called neutral factor. For certain predictions it is advan-
tageous to refine the classification of activators and in-
hibitors by considering also information about negative
feedback loops: if A is an activator of B and none of
the species lying on a path from A to B is part of a nega-
tive feedback, B behaves monotone with respect to
changes in A (see [51] how this translates to ODE sys-
tems), that is, increasing A results (after some time) in
an increase of B. In this case, we call A a strong activator
for B in contrast to weak activators, where at least one
of the activating paths touches a negative feedback loop
[10,52]. Accordingly, if A is an inhibitor of B and none
of the species lying on a path from A to B is part of a
negative feedback loop, increasing A results in a de-
crease of B, and A is called a strong inhibitor of B, other-
wise weak inhibitor. For weak activators and inhibitors,
we can only predict that the initial response (starting
from a steady state) of the target nodes will be positive/
negative, but nothing can be said on the asymptotic be-
havior. In ODE systems, the initial response as well as
possible asymptotic responses to perturbations of steady
state values can partially be derived from information on
path signs and feedback structures of the associated
interaction graph [53].
The information how the species influence each other

can be stored in a compact manner in a dependency
matrix [10]. The diagonal entries of this matrix repre-
sent how a species acts on itself: just as the influence of
a species on another is characterized by the sign of the
connecting paths, the influence of a species on itself is
characterized by the sign(s) of the feedback loop(s) it is
involved in. Based on the dependency matrix, the effect
of stimulation or perturbation experiments can be pre-
dicted and then be compared with the measured behav-
ior (see below). The dependency matrix for the EGF/
NRG1 example model is shown in Figure 3.



Figure 3 Dependency matrix of the EGF/NRG1 example model given in Figure 2A. The color of row i, column j shows the influence of
species i on species j.
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Computing all paths between a pair of nodes also en-
ables to identify redundant routes. These parallel path-
ways of the same sign may increase the system's
robustness [54], but also resistance, for example, when
cancer cells do not respond to (single) drugs because
multiple pathways may still transduce an (aberrant) sig-
nal [55]. The EGF/NRG1 network example contains, for
example, six different positive paths from NRG1 to Akt
(Figure 2A).
Given a set of paths or feedback loops, the participa-

tion of the different species in these subnetworks can be
computed. This enables to detect species that are essen-
tial for a certain signaling event [10]. As a trivial ex-
ample, PI3K and PIP3 are essential for the activation of
Akt through NRG1 as they participate in all six signaling
paths (Figure 2A).
Related to the species participation in a set of paths is

the problem of identifying possible strategies to prevent
signal propagation through certain signaling paths, a
task that is of particular importance for medical applica-
tions. If, for example, one is interested in blocking the
activation of Akt in response to NRG1 or EGF, one pos-
sibility is to prevent signaling through the essential PI3K
by inhibiting its kinase activity or by removing it from
the system. To block Akt activation by intervening at
the receptor level, one has to make sure that signaling
through all three receptor dimers ErbB11, ErbB13 and
ErbB23 is prevented as they give rise to redundant
routes. To tackle those problems, Minimal Cut Sets
(MCSs) can be computed in interaction graphs which
are minimal sets of compounds or/and edges that have
to be removed to interrupt a given set of paths and/or
feedback loops [10]. MCSs correspond to feedback arc
sets or feedback vertex sets in the special case where
feedback loops are to be disrupted [56]. MCSs in inter-
action graphs are also very similar to MCSs introduced
for metabolic networks, which disrupt a given set of
metabolic pathways, for example, those synthesizing an
undesired product [57]. Both types of MCSs can be
computed by the minimal hitting set algorithm, and it is
also possible to consider side constraints (e.g., to keep
certain (desired) paths/pathways intact) [58].
A generalized approach of minimal cut sets in inter-

action graphs is that of Minimal Intervention Sets, where
not only cuts (inactivation/removal of nodes), but also
permanent activations of selected nodes are allowed
[10]. In this way, the signed effect of the nodes within a
given path can be better accounted for. For example, to
block the negative effect (path) of ErbB2 on ERK in
Figure 2A, one could either cut/inactivate ErbB2, or per-
manently activate one of the nodes ErbB13, Grb2, SOS,
Ras, MEK, or ERK. However, such intervention strat-
egies are generally better computed as minimal interven-
tion sets in logical networks (see below).

Comparison of experimental data and signaling network
topologies
Although interaction graphs merely capture the positive
and negative influences between pairs of species, their
structure already constrains the possible qualitative be-
havior of the nodes in response to stimulations or per-
turbations. One possible approach is to compare
predictions derived from the dependency matrix with
the qualitative changes in the activation levels of certain
components that are caused by introducing, for example,
a ligand or inhibitor [10,20]. As demonstrated in applica-
tions to T cell receptor signaling [59] and to ErbB recep-
tor [20] and Interleukin 1 and 6 signaling [60] in
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primary human hepatocytes, such an analysis enables
the identification of cell-type specific discrepancies be-
tween model structure and experimental data and facili-
tates the formulation of new hypotheses and conclusions
on missing or probably inactive interactions. We briefly
describe the approach with the help of the example
model (the dependency matrix is given in Figure 3).
Stimulating the cell with EGF should result in increased
phosphorylation levels of ErbB11 and ErbB13 compared
to the unstimulated case as EGF is a strong activator of
these two receptor dimers. In contrast, phosphorylation
of ErbB23 should according to the model not be
influenced by EGF stimulation. As another example, the
phosphorylation level of ERK should be increased in re-
sponse to EGF when considering the initial response
after stimulation (up to the signal's peak); however, as
EGF is only a weak activator of ERK, at later time points
the negative feedback loop might cause a decrease even
beneath the phosphorylation level of ERK in the un-
stimulated cell, so that for the later time points no pre-
dictions can be derived from the dependency matrix
[10]. Introducing an inhibitor blocking the MEK kinase
activity should lead to an increase in Ras activity, as
MEK is an inhibitor of Ras. In this case, although MEK
is a weak inhibitor of Ras, the predictions are not limited
to the early time points, as the negative feedback loop is
disconnected by introducing the MEK kinase inhibitor.
Finally, a change in the expression level of ErbB2 might
lead to an increased, decreased, or unchanged state of a
number of downstream nodes of which ErbB2 is an am-
bivalent factor: these nodes can be reached by positive
paths running over ErbB23, while at the same time being
targets of negative paths from ErbB2 via ErbB13. The
qualitative response is in this case dependent on the
strength of the respective paths and can thus not be re-
vealed solely from the structural information represented
by the interaction graph.
Another approach to identify discrepancies between

the network topology captured in an interaction graph
and qualitative changes in experimental data is based on
the concept of sign consistency [61-63]. The underlying
principle is that an observed change of a node must be
explainable with the observed change of at least one of
the direct predecessors of this node. As an example, the
activity of SOS in our example model can only increase
if either Grb2 activity increases or ERK activity de-
creases. A major difference to the previously described
approach using the dependency matrix is that, in the lat-
ter, all experimental observations are treated independ-
ently, while here, the response of several readouts
measured in the same experiment must be consistent to
each other. For example, after increasing the expression
level of ErbB2, an increase in MEK phosphorylation and
a decrease in ERK phosphorylation are both in
accordance with the dependency matrix given in
Figure 3. However, if both species activities are mea-
sured in the same experiment, it is not possible that they
show an opposite behavior. Importantly, this is only true
under a steady state assumption: the measurements
must be taken at a time point where the direction of
change induced by the perturbation does not change
anymore. Using the concept of sign consistency, possible
places in the network structure that cause observed dis-
crepancies between experimental data and model struc-
ture can be identified, and, furthermore, one can identify
changes in the network structure (i.e., adding/removal of
certain edges) to minimize these inconsistencies [64],
(Melas et al. 2013, under revision).

Logical models
Given a signaling pathway, a question that immediately
arises is whether pathway stimulation leads eventually to
full activation of a certain downstream protein, for ex-
ample, a transcription factor. This is an example for a
question of qualitative nature that can often not directly
be answered based on an interaction graph, but requires
more complex (and deterministic) modeling formalisms.
First of all, the state of a node—in the easiest case “ac-
tive” or “inactive”—is not defined in an interaction
graph; rather, state changes can be considered (“up” or
“down”). Furthermore, interaction graphs reflect pair-
wise interactions, whereas the biochemical processes in
the cell often involve more than two players. Thus,
whether a signal can be transmitted from a source node
to a target node often depends on a third node. An ex-
ample from Figure 2A is the activation of ErbB11: both
the receptor monomer ErbB1 and the ligand EGF are
needed to get the phosphorylated receptor dimer that is
able to trigger downstream signaling events. This shows
that information on how the different interactions influ-
encing a species are combined is necessary to make
functional predictions on a node’s state. One possibility
is to decode this information into a logical function. To-
gether with logical variables associated with each species
and representing the activation level as discrete states,
these functions define a logical network.
Logical modeling of biological systems was pioneered by

Kauffman [65] and has since then emerged as valuable for-
malism in systems biology (for recent reviews see, e.g.,
[11,12,66]). Various applications to modeling gene regula-
tory and signaling networks can be found in the literature
[20,60,67-74]. Most frequently, Boolean networks are stud-
ied where the logical variables are only allowed to take the
values 0 (“inactive” or “absent”) or 1 (“active” or “present”).
In more general approaches, the variables can take an arbi-
trary number of discrete (multi-valued logical models; see
[36]) or even continuous values (fuzzy logic models; see, e.
g., [75,76]). In the following we focus on Boolean models.
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The restriction to only two possible states for a mol-
ecule might appear as a crude simplification of the bio-
logical reality. However, regulatory interactions in
biology are often of sigmoidal shape [36]: a regulator A
has little effect on the activation/synthesis of its target
molecule B until A reaches a threshold concentration θ;
once the concentration of A exceeds θ, B rapidly reaches
its maximal activation/synthesis rate. This justifies the
assumption that A is inactive/absent for A < θ, and ac-
tive/present for A > θ [36,77]. Sigmoidal signal-response
curves induce ultrasensitive behavior and are also found
in signal transduction networks: the activity of a protein
that is regulated by phosphorylation and dephosphoryla-
tion shows a sigmoidal shape if one assumes that both
mechanisms are governed by Michaelis-Menten kinetics
[37,66].

Hypergraph representation of logical models
As mentioned above, every node in a logical network
possesses a logical function defining how the state of the
node (that is, the value of the associated logical variable)
can be derived from the state of other nodes. Generally,
a logical function can be composed by using arbitrary lo-
gical operations (such as AND, OR, NOT, XOR, NAND
etc.), and different representations of one and the same
logical function may exist [36]. It is often useful and in-
tuitive to restrict the logical operators to AND (also
called logical product), OR (also called logical sum), and
NOT, and then to express the logical functions as sum of
products (SOP) [78] (also known as disjunctive normal
form (DNF)). Any Boolean function can be expressed in
this way.
We exemplify the SOP representation by means of activa-

tion of ErbB13 in the EGF/NRG1 model. Dimerization of
ErbB1 and ErbB3 and subsequent autophosphorylation of
the receptor dimer arises both after EGF and NRG1 stimu-
lation and is impaired if ErbB2 is present (see description of
the example model above). Thus, assuming each species
can be either active/present (1) or not (0), and using the
symbols · for AND, + for OR, and ! for NOT, the logical
function describing ErbB13 activation reads in SOP
representation

ErbB13 = EGF · ErbB1 · ErbB3 · !ErbB2
+ NRG1 · ErbB1 · ErbB3 · !ErbB2.

As characteristic for SOP representation, AND terms
consisting of several logical variables or their negated
form are ORed together.
A representation of logical networks that is well-suited

to study signal transduction pathways is based on di-
rected hypergraphs which in turn relies on SOP
represented logical functions [10]. Hypergraphs are gen-
eralizations of graphs, as an edge in a hypergraph (also
called hyperedge) is not restricted to connect a pair, but
can connect an arbitrary number of nodes. Accordingly,
a hyperedge in a directed hypergraph connects a set of
start nodes with a set of end nodes [79]. In our particu-
lar case, the set of end nodes consists of only one elem-
ent. Just as in interaction graphs, the nodes of the
hypergraph represent the biological species. Now, each
summand (which is an AND term or a single, possibly
negated, logical variable) within the SOP-represented lo-
gical function of a node A becomes a hyperedge pointing
into this node A.
Thus, each hyperedge in the hypergraph can be

interpreted as a signaling event, that is, one mode of ac-
tivation of the downstream node. If a hyperedge has sev-
eral start nodes, the associated logical variables are
inputs of an AND operation. In case of a single start
node, the hyperedge becomes a simple edge, which indi-
cates that the activation level of a single species deter-
mines the state of the downstream node. Furthermore,
each edge branch has an associated sign indicating
whether the value of the node it arises from is negated
by a NOT operation (−) or not (+). Different activation
modes of one species, that is, edges that point into the
same node, are connected by an OR operation.
Considering again the logical function of ErbB13, each

summand (AND term) is represented as a hyperedge
pointing into ErbB13 in the hypergraph: the first
hyperedge connects the start nodes EGF, ErbB1, ErbB3,
and ErbB2 with the end node ErbB13; the second
hyperedge connects the start nodes NRG1, ErbB1,
ErbB3, and ErbB2 with ErbB13 (Figure 2B). In both
hyperedges, the branch coming from ErbB2 is marked in
red, indicating that it enters the logical function in its
negated form. Figure 2B shows the complete hypergraph
representation of the logical model of EGF/NRG1 signal-
ing from which the logical functions of each node can
easily be derived.
The typical workflow when building a logical model is

to first determine and analyze the interaction graph be-
fore defining the logical functions for each node. Choos-
ing an appropriate logical function for a signaling
process is not an easy task and requires a competent
knowledge of the molecular mechanisms behind; there-
fore, this step often involves an intense literature study
[20,60]. Obviously, several logical models can be derived
from the same interaction graph. Even in the Boolean
case—as long as a node has more than one ingoing edge
—one has to decide whether to use an AND or an OR
operation, or, in the case of three or more inputs, a com-
bination thereof.
In cases where one cannot gather from the available

knowledge whether an AND or an OR operation is the
more apposite description of a biological process, an al-
ternative is to use logical operators with an incomplete
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truth table [10]. In general, this limits the determinacy
of the model. However, as signaling pathways often fea-
ture redundant network structures, a model containing
logical operations with incomplete truth tables can still
have a high predictive power [20].
Alternatively, one can use Probabilistic Boolean Net-

works [80] to deal with uncertainties regarding the
choice of the logical function. These models allow one
to define more than one logical function for each node.
Each time the state of a node is updated, the logical
function determining its state is selected according to a
predefined probability.
The number of possible logical functions to model the

activation of a species can significantly be reduced by
restricting the choice to functions showing a certain
structure. An example is that of canalyzing Boolean
functions that were introduced by Kauffman as “any
Boolean function having the property that it has at least
one input having at least one value (1 or 0) which suf-
fices to guarantee that the regulated element assumes a
specific value (1 or 0)” [81]. For an OR operation, for ex-
ample, it holds that any input set to 1 determines the
state of the output node to 1. This can be generalized to
nested canalyzing functions, where also the non-
canalyzing inputs are structured [82]; this concept has
also been extended to multistate logical functions [83].
Restricting the choice of logical functions to these struc-
tured rules might be considered as nested canalyzing
functions appear frequently in molecular interaction net-
works [82-84]. It has also been shown that using these
structured logical rules leads to networks with robust
and regular dynamics, a behavior that is characteristic
for biological systems [82,83].
A further advantage of the hypergraph representation

is that it enables one, if desired, to return to the inter-
action graph which underlies the logical model and from
which the logical model was built: one only needs to
split the hyperedges representing AND operations into
simple edges (with a minus sign if the edge stems from a
negated branch of the hyperedge) followed by a removal
of possibly arising duplicate edges [10]. In this way, the
characteristics of the interaction graph are preserved in
the logical description and can easily be derived from it,
for example, if the user wants to compute the feedback
loops (implicitly) contained in the logical network.

Logical dynamic modeling
One reason that logical models have emerged as valuable
modeling approach for biological systems is the fact that
the logical description—despite its simplicity—is able to
capture essential qualitative features of the system's dy-
namics [36,77]. In the classical approach, the dynamics
of a logical model are defined by a synchronous updat-
ing scheme [65]: the value of node i at time t + 1 is
determined by the logical values of its input nodes i1,…,
ik at time t as given by its logical function Bi :

xtþ1
i ¼ B xti1 ; x

t
i2 ;…; xtik

� �
All states are updated simultaneously, assuming that

the modeled biological processes all have the same dur-
ation. The synchronous scheme is deterministic as each
state is followed by one subsequent state. In contrast,
with the asynchronous logical description a more realis-
tic updating scheme was introduced by which different
time delays for the individual biological events can be
accounted for [78]. Several asynchronous updating
schemes exist that differ in how the state transition
times are defined. In stochastic schemes, the node(s)
that is (are) updated in the next time step t + 1 is (are)
chosen randomly [85], whereas in deterministic asyn-
chronous schemes, the nodes are updated according to a
predetermined order [86]. The choice of the updating
scheme highly determines the system's dynamics [87],
and the differences between synchronous and asyn-
chronous as well as between different asynchronous ap-
proaches have been extensively studied [36,87-91]. The
possible sequences of states that can take place in a net-
work according to the logical functions and the chosen
switching schemes can be represented in a state transi-
tion graph (also called graph of sequence of states; see
[36]).
Of particular importance when studying logical models

of biological systems is the identification of attractors.
These attractors represent the long-term behavior of the
system and can often be associated with cellular pheno-
types or steady cellular states [11]. The simplest
attractors are made up of a single state, referred to as
fixed point or (logical) steady state. In the latter, the state
of each node coincides with the value of its logical func-
tion. Hence, once the system reaches such a fixed point,
no node can switch anymore and the system remains in
this state. The existence of these steady states is inde-
pendent of the chosen updating scheme [11]. Complex
(cyclic) attractors are made up of several states among
which the system oscillates. Their occurrence depends
on the updating scheme: deterministic and stochastic
models can have different complex attractors, and the
occurrence of spurious oscillations is a known artifact of
the synchronous approach [91].
Several software tools exist that enable the dynamic

modeling of logical networks. Examples are GINsim
[92], SQUAD [93], BooleanNet [94], ChemChains [95],
Odefy [96], and BoolNet [97].
In Figure 4A we see the dynamic response of the EGF/

NRG1 model using synchronous updating and setting
the initial values for EGF, ErbB1, ErbB2, and ErbB3 to 1,
all other initial values to 0. The negative feedback loop



Figure 4 Discrete dynamic simulation of the Boolean EGF/NRG1 example model (Figure 2B) using synchronous updating. (A) Response
to EGF stimulation. The inputs in Figure 2B were set as follows: EGF = 1, NRG1 = 0, ErbB1 = ErbB2 = ErbB3 = 1. (B) Response to EGF stimulation in
presence of MEK inhibitor blocking the catalytic site of MEK. The inputs were set as in Figure 4A. In addition, the edge MEK→ ERK was removed
from the model in Figure 2B.
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gives rise to a cyclic attractor so that the involved spe-
cies oscillate between 0 and 1. This confirms one role of
negative feedback loops discussed in a previous section.
In ODE models they appear more frequently to induce
homeostasis, that is, to stabilize a steady state (between
maximum and minimum values; see below). As Boolean
models are not able to reach node states between 0 and
1, feedback loops often induce an oscillatory behavior.
The other species in the discussed scenario reach a lo-
gical value that does not change anymore.
One can easily test the effect of interventions in a lo-

gical model: taking the same scenario used above and as-
suming in addition that the catalytic activity of MEK
was inhibited (i.e., removing the downstream edge of
MEK, MEK→ ERK), all species that showed oscillations
in the previous simulation now reach a steady state
(Figure 4B). The values of all other species are not
affected.

Static analysis of logical networks
Dynamic modeling of logical networks has been success-
fully applied to a variety of biological regulatory net-
works (e.g., [67-69,72,73]). However, as the knowledge of
initial conditions and timescales is often incomplete in
biological systems, an application to large-scale networks
is difficult [11]. Thus, in addition to the described
dynamic simulations of a logical network, there are static
methods particularly suited for the analysis of large-scale
networks.
As already stated above, a fundamental question that

arises when studying signaling pathways is how the sys-
tem reacts to different stimulations, for example, differ-
ent combinations of ligands and inhibitors. Given a
logical network, the qualitative input–output response
can be computed by propagating the logical values of a
set of fixed input nodes according to the logical func-
tions. Apart from the inputs, all other logical values are
assumed to be unknown. The goal of this procedure
(which uses so-called 3-valued logic by which also un-
known states (for the internal nodes) can be considered
[98]) is to infer the logical steady state that results from
the given inputs [10].
As discussed above, feedback loops can lead to oscilla-

tions or multiple steady states. Thus, in presence of
functional feedback loops, it might happen that no
unique steady state can be derived from a given set of
inputs. However, it might still be possible to derive the
qualitative response of a subset of nodes that is not
under feedback control (also referred to as partial
logical steady state; see [10]). As an example, suppose
the system in Figure 2B is stimulated with EGF in pres-
ence of all receptors. Propagating the logical states of all
input nodes according to the logical functions, we can
compute the states of the receptor dimers and of Grb2
(see Table 1). The other states cannot be uniquely deter-
mined due to the positive and negative feedback loops:
as Grb2 is 1, the state of SOS depends on the activation
level of ERK that is in turn dependent on SOS. The state
of Gab1 depends on PIP3 activity and thus on the state
of PI3K. However, as two of the OR-connected inputs of
PI3K are 0 (ErbB13 and ErbB23) and the state of another
one cannot be determined (Ras), the state of PI3K de-
pends on the state of its fourth input, which is again
Gab1. Stimulation with NRG1 results in a different situ-
ation (see Table 1): in this case, PI3K can be activated
directly by ErbB23, thus, independently of the states of
the other nodes in the positive feedback loop, PIP3 and
Gab1. As the state of one node of the positive feedback
is now determined, the other states in the loop can also
be computed. The values of the nodes forming the nega-
tive feedback loop are still undefined.
Another way to treat negative feedback loops is to

remove them before computing the logical steady state.
This is often justifiable as, from a qualitative perspective,



Table 1 Logical steady states in the EGF/NRG1 example model

With negative feedback Negative feedback removed

Fixed input values EGF 1 0 1 0

NRG1a 0 1 0 1

ErbB1 1 1 1 1

ErbB2 1 1 1 1

ErbB3 1 1 1 1

Computed logical steady state values ErbB11 1 1 1 1

ErbB13 0 0 0 0

ErbB23 0 1 0 1

Grb2 1 1 1 1

SOS * * 1 1

Ras * * 1 1

MEK * * 1 1

ERK * * 1 1

Gab1 * 1 1 1

PI3K * 1 1 1

PIP3 * 1 1 1

Akt * 1 1 1

The logical variables of the input nodes were set to the specified value and, according to the logical functions (see Figure 2B), propagated through the network.
The entry * indicates that the respective steady state value could not be determined.
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one might only be interested in which signals can be ac-
tivated at all and does not want to consider the
downregulating effect of a negative feedback loop com-
ing into play once the initial response occurred [10,20].
In our example model, we can break the negative feed-
back loop by removing the negative effect of ERK on
SOS. As a consequence, all states can be computed in
response to both EGF and NRG1 (see Table 1).
Positive feedback loops amplify the signaling response.

Thus, their effect can often not be described in a satis-
factory way using Boolean states. The biology behind the
positive feedback loop in our example model is as fol-
lows [99]: in response to growth factor stimulation,
Gab1 is recruited to the plasma membrane through
binding to the ErbB1-Grb2 complex. This leads to acti-
vation of PI3K and, in turn, generation of PIP3. The lat-
ter recruits additional Gab1 molecules to the receptor
complex at the plasma membrane what enhances down-
stream signaling. In this case, a multi-level logical de-
scription would be most appropriate: active Grb2 (i.e.,
Grb2 bound to ErbB1 homo- or heterodimers) activates
Gab1 to level 1, whereas Grb2 AND PIP3 activate Gab1
to level 2.
Computing the qualitative network response as de-

scribed above enables to compare predictions derived
with a given network structure with discretized data
from stimulus–response experiments [20,59,60]. Of
course, one has to ensure that the measured time points
and possible assumptions that are made for the logical
steady state analysis, for example, regarding the activity
of feedback loops, are valid [100]. Based on logical
steady state analysis, it is also possible to train a given
network structure to a set of experimental data [101].
Another problem that uses the concept of logical

steady states is the identification of sets of interventions
(an intervention representing logical values fixed to a
certain value thus corresponding to knockouts or consti-
tutive activations) to achieve a predefined intervention
goal, for example, a certain phenotypic response of the
cell [10,98]. Similar as in interaction graphs, a concept
of Minimal Intervention Sets (MISs) can be introduced
for logical models, and the resulting sets in interaction
graphs and logical models tackling the same target nodes
are naturally correlated. However, whereas minimal cut
sets and minimal intervention sets in interaction graphs
are restricted to questions regarding signaling paths and
feedback loops (e.g., “How can all negative feedback
loops be interrupted?”), in logical models a certain func-
tional behavior (state) should be achieved. Typical prob-
lems that can be addressed by the computation of MISs
in logical models are the identification of drug targets,
the identification of failure modes that might cause an
observed pathological behavior (diagnosis problem), and
the identification of nodes that are of central importance
for a certain biological function [98]. Furthermore, MISs
can be used to identify necessary changes in a proposed
network structure to remove inconsistencies between
model predictions and data [59,98]. The problem of
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identifying intervention strategies has also been
addressed within the framework of probabilistic Boolean
networks [102].
In the logical model of the example network

(Figure 2B), we looked for interventions to activate
ERK (ERK = 1) and deactivate PI3K (PI3K = 0) in pres-
ence of all receptors. The identified MISs are given in
Table 2. At least three interventions are required.
MEK has to be set to 1 in all MISs: a more upstream
intervention with the goal to activate ERK would at
the same time lead to activation of PI3K through Ras,
although deactivating PI3K is desired. In order to
achieve PI3K = 0, two further interventions are re-
quired: (i) set NRG1 or ErbB23 to 0, and (ii) set EGF,
ErbB11, Grb2, Gab1, or PIP3 to 0.
A related approach to MISs is the identification of

vulnerable molecules in Boolean models of signaling
pathways [103]. By applying methods from fault
diagnosis in electronic systems, it is checked to what
extent a dysfunction in a certain node leads to an
incorrect system output: one tests for each combin-
ation of input signals whether an installed fault in a
node is propagated to the output nodes. Nodes
showing a high vulnerability are the ones that are
important for a proper functioning of the signaling
pathway.
Another structural method for the analysis of Boolean

signaling networks is the concept of elementary signaling
modes that can be seen as an extension of signaling
paths in interaction graphs [104]. An elementary signal-
ing mode is a minimal set of components that are able
to trigger a certain signaling response autonomously.
Again, this approach enables to identify essential signal-
ing species.
Table 2 Minimal intervention sets in the EGF/NRG1 logical mo

Intervention goal: ERK = 1, PI3K = 0

Side constraints: ErbB1 = 1, ErbB2 = 1, ErbB3 = 1

EGF NRG1 ErbB11 ErbB13 ErbB23

1 0 0

2 0 0

3 0

4 0

5 0

6 0 0

7 0 0

8 0

9 0

10 0

Shown are the computed minimal intervention sets to activate ERK and deactivate
constitutive activation whereas “0” indicates a required deactivation. Interventions f
ERK and PI3K have not been considered.
Relation to Petri nets
An alternative modeling approach to logical modeling
that is also well-suited for the analysis of large-scale bio-
logical networks is the Petri net formalism (reviewed, e.
g., in [8,9]). Petri nets are directed bipartite graphs with
two types of nodes, places and transitions. When model-
ing a biological system, places usually represent the bio-
logical species and transitions the biochemical reactions.
Each transition has a set of input places (indicated by a
weighted directed edge from each input place to the
transition) and a set of output places (indicated by a
weighted directed edge from the transition to each out-
put place. The dynamic evolution of the system is de-
scribed by tokens: at any time, each place holds zero or a
positive number of tokens. If all input places of a transi-
tion carry at least the required number of tokens (de-
fined by the edge weight of the corresponding edge), the
transition may fire: all tokens of the input places are
consumed, and new tokens in the output places are gen-
erated. The number of generated tokens in an output
place is thereby given by the weight of the edge pointing
out of the transition into this place. This briefly de-
scribes standard (qualitative) Petri nets that can be used
to study structural system properties as well as the
system's discrete dynamics. Several extensions (giving
rise to different types of Petri nets) have been developed
allowing, for example, also quantitative modeling [8,9].
The application of Petri nets to biological systems

was first proposed by Reddy et al. [105].
Representing consumption and production of tokens,
the Petri net approach is particularly suited for mod-
eling mass flows as they arise in metabolic networks,
whereas the description of signal or information
flows as characteristics of gene regulatory and signal
del (Figure 2B)

Grb2 SOS Ras MEK Gab1 PIP3

1

1

0 1

1 0

1 0

1

1

0 1

1 0

1 0

PI3K in presence of ErbB1, ErbB2, and ErbB3 (see Figure 2B). “1” means
or species with fixed values (i.e., ErbB1, ErbB2, ErbB3) and the target species
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transduction networks is less straightforward. In
contrast, the logical modeling approaches as de-
scribed above have directly been introduced as quali-
tative descriptions of signaling and regulatory
networks. Nevertheless, several approaches can be
found in the literature where the standard Petri net
description has been extended in order to describe
signal flows (for example, by introducing inhibitory
edges), or where new techniques dedicated for the
analysis of signaling and gene regulatory networks
have been designed [8,9]. An example is the work of
Sackmann et al. [106], which shows connections to
logical modeling: the signaling processes are de-
scribed as logical terms and are subsequently trans-
lated into Petri net components. The authors
provide new concepts for the analysis of signal flows
within the Petri net formalism that enable model
validation based on the network structure. In a re-
lated work, Chaouiya et al. propose a method to de-
rive a standard Petri net from a Boolean regulatory
model [107]; the more general case of a Petri net
representation of multi-valued logical models has
also been considered [108]. The authors show how
the combination of the two modeling approaches en-
ables to reveal specific relationships between the
feedback structure and the dynamic behavior of the
system. This demonstrates that logical modeling and
the Petri net formalism offer complementary model-
ing frameworks for the analysis of complex signal
transduction networks.

ODE models derived from Boolean models
As described above, logical models can be used to
analyze structural properties of signaling networks.
To some extent, they also enable to derive conclu-
sions about the dynamic behavior—though, limited
to qualitative aspects. In order to reproduce quanti-
tative time course data, an approach considering
continuous values for space and time is required.
There are several methods dealing with the conver-
sion of logical functions to continuous functions.

Piecewise-linear differential equations
Already in 1973, Glass and Kauffman introduced sys-
tems of piecewise-linear (PL) differential equations
(also named hybrid models) as continuous counter-
parts of Boolean models [77]. A common formula-
tion of a PL differential equation is

_�xi tð Þ ¼ Fi �x tð Þð Þ−λi�xi tð Þ;

where �xi is a continuous variable describing the con-
centration of species i and λi > 0 its degradation rate
[36,109,110]. The function Fi is a positive
combination of sums and products of step functions
s+ and s− defined by

sþ �xj; θ
k
j

� �
¼ 1; �xj > θkj

0; �xj < θkj
;

(

and

s− �xj; θ
k
j

� �
¼ 1−sþ �xj; θ

k
j

� �
;

and expresses the conditions under which species i
is activated. Again, the use of step functions is justi-
fied as it approximates the typically sigmoid shape of
regulatory interactions in biology [36]. The threshold

θkj refers to the concentration of species j that has

to be exceeded to affect the target molecule. In each
interaction, this critical concentration of species j
might be different.
PL models are closely related to asynchronous logical

models [36]; the function Fi can be seen as the equiva-
lent of the logical function in the discrete model [110].
The similarities and differences between the qualitative
dynamics of the two modeling formalisms have been ex-
tensively studied. For example, it has been shown that
attractors in the logical model and in the PL model are
related [77,110-112]. Furthermore, de Jong and co-
workers [113] developed a method to present and
analyze gene regulatory networks represented as PL dif-
ferential equations by means of state transition graphs,
that is, in a similar manner as the qualitative dynamics
in logical networks are studied. This approach was
implemented in the software Genetic Network Analyzer
[114].

Logic-based ODEs derived by multivariate polynomial
interpolation
The step functions used to build PL models imply dis-
continuities hampering their simulation with standard
numerical integrators. The approaches developed by
Mendoza et al. [115] (implemented in the software
SQUAD [93]) and Wittmann et al. [18] (implemented in
the software Odefy [96]) transform Boolean models into
systems of continuous differential equations The dy-
namic descriptions are derived automatically from the
Boolean ones without adding any further knowledge;
thus, the resulting models, although being able to be fit-
ted against experimental data, must be considered as
phenomenological models [18]—in contrast to mechan-
istic (kinetic) models that require more detailed informa-
tion on the kinetics and parameters of the involved
processes [3]. In the following, we will briefly describe
the Odefy approach which is based on multivariate poly-
nomial interpolation [18,96].



Figure 5 Continuous counterparts of Boolean functions. The output values of the represented Boolean function with binary input values are
denoted as orange circles. (A) BooleCube representation of B(x1,x2) = x1 AND x2. (B) BooleCube representation of B(x1,x2) = x1 OR x2. (C)
Normalized HillCube representation of B(x1,x2) = x1 OR x2.
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In order to obtain a continuous model, both the Bool-
ean variables and the Boolean functions have to be re-
placed by continuous counterparts. For the Boolean
variables xi ∈ {0,1}, this is simply achieved by introducing
for each modeled species i a variable �xi ∈ [0,1] which will
represent the normalized continuous variable of the i-th
node. For the Boolean functions, as a first approach, the
discrete functions Bi are linearly interpolated. The

resulting continuous functions �BB
i are referred to as

BooleCubes [18]. For example, the BooleCube describing
an OR operation with two inputs, B(x1,x2) = x1 OR x2,
reads

�BB
�x1; �x2ð Þ ¼ �x1 1−�x2ð Þ þ 1−�x1ð Þ�x2 þ �x1�x2;

what can be simplified to

�BB
�x1; �x2ð Þ ¼ �x1 þ �x2−�x1�x2: ð1Þ

The BooleCube formulation of B(x1,x2) = x1 AND x2 is

�BB
�x1; �x2ð Þ ¼ �x1�x2:

Figure 5A and B show the BooleCube functions for an
AND and an OR operation.
An alternative to linear interpolation that takes into

account the usually sigmoid shape of regulatory interac-
tions is the usage of Hill functions [18]. The Hill func-
tion takes the form h(x) = xn/(xn + kn), where the Hill
coefficient n defines the steepness of the function, and
the parameter k corresponds to the activation level of
species x at which the latter triggers half of the maximal
activating effect on a downstream node. The alternative
transformation method HillCubes [18] applies Hill func-
tions to the arguments before performing the linear
interpolation. As an example, consider again the logical
operation B(x1,x2) = x1 OR x2 whose BooleCube repre-
sentation is given in Eq. (1). The corresponding

HillCube function �BH is
�BH
�x1; �x2ð Þ ¼ �BB h1 �x1ð Þ; h2 �x2ð Þð Þ

¼ �x1n1

�x1n1 þ k1n1

þ �x2n2

�x2n2 þ k2n2
−

�x1n1

�x1n1 þ k1n1
⋅

�x2n2

�x2n2 þ k2n2
;

and B(x1,x2) = x1 AND x2 is given by

�BH
�x1; �x2ð Þ ¼ �x1n1

�x1n1 þ k1n1
⋅

�x2n2

�x2n2 þ k2n2
:

BooleCubes map the values of the unit cube (i.e., argu-
ment values that are either 0 or 1) to the value of the lo-
gical function they are derived from. In contrast,
HillCubes never assume the value 1. Therefore, apart
from BooleCubes and HillCubes, one can also consider
HillCubes normalized to the unit interval as another
continuous representation of the logical functions [18].
Figure 5C shows the normalized HillCube for an OR
operation.
In the continuous model, the variables �x are

interpreted as normalized concentrations of species i
(e.g., concentration of the phosphorylated form of a
protein), and the production of each species is given
by the continuous counterparts �Bi of the logical

functions—either using BooleCubes (i.e., �Bi ¼ �BB
i ) or

(normalized) HillCubes (i.e., �Bi ¼ �BH
i ). In addition,

each species is assumed to be degraded at a rate
proportional to its concentration. Thus, for each
species i the ordinary differential equation

_�xi ¼ 1
τi

�Bi−�xið Þ

describes the development of its concentration over
time. The parameter τ can be interpreted as life-time
of the species [18].
As already stated above, the ODE system that is de-

rived from a logical model in the presented way is not a
mechanistic model. Nevertheless, possibly after param-
eter estimation using experimental results, it can, in
principle, be used to explain and predict the quantitative



Figure 6 ERK and Akt response to EGF using different time delays for the negative feedback. The Boolean model given in Figure 2B was
transferred to an ODE model using HillCubes. All Hill coefficients were set to 3, all parameters k to 0.3, and all parameters τ to 1, except the
parameter τ describing the life time of SOS and thus the delay of the downregulating effect of the negative feedback loop. (A) Parameter τ_SOS
set to 80. (B) Parameter τ_SOS set to 40. (C) Parameter τ_SOS set to 1.
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and dynamic behavior of the system. As an example, an
ODE model derived from a Boolean model of T cell acti-
vation has been shown to be able to reproduce time
courses in response to different ligand concentrations
and to predict binding affinities of different ligands [18].
For illustration, we transformed the Boolean EGF/

NRG1 example model given in Figure 2B to an ODE
model using HillCubes implemented in Odefy [96]. In
order to show possible time courses of some of the read-
outs, we manually set the parameter values in the fol-
lowing way: all Hill coefficients were set to 3, the
parameters k to 0.3 and the parameters τ to 1. Figure 6
shows the response of Akt and ERK to EGF stimulation
using different time delays for the negative feedback
loop. In Figure 6A, the downregulating effect of the
negative feedback was delayed by increasing the life-time
of SOS (parameter τ_SOS) to 80. Akt shows a sigmoidal
response: after some delay (caused by the long life time
of SOS), it is rapidly activated and the signal stays at its
highest activation level. ERK is also activated after some
time, but the signal is subsequently downregulated by
the negative feedback loop. Setting the time delay of
SOS to 40, both Akt and ERK are activated at an earlier
time point. Furthermore, ERK is activated to a higher
level than before and exhibits a damped oscillatory re-
sponse (Figure 6B). Removing the time delay, that is, set-
ting all parameters n to 3, all k to 0.3, and all τ to 1,
ERK shows a pronounced oscillatory behavior
(Figure 6C). The sigmoid response of Akt is not
influenced by the time delay of the negative feedback, al-
though Ras (being part of the feedback loop) is linked to
PI3K. This is possible because the influence of Ras arriv-
ing at the PI3K node was combined with an OR operator
with the other incoming effects (e.g., from Grb2) in the
original Boolean model.
This example shows that the logic-based ODE model,

although not using mechanistic kinetics, is in principle
able to give rise to different complex dynamics depend-
ing on the choice of the parameters (which, as in all
ODE models, must be determined or estimated from ex-
perimental data). This stands in contrast to the Boolean
model, which—for the same scenario—could only pro-
duce oscillatory behavior. Note also that the initial
response of ERK to a stimulation with EGF was positive,
as correctly predicted by the dependency matrix (see
Figure 3; EGF is a weak activator of ERK) and by the ini-
tial response prediction in the logical model when
switching off the negative feedback loop (by cutting the
edge from ERK to SOS).

Conclusion
Qualitative modeling approaches are usually the tool of
choice in large-scale biological networks, where a predictive
mechanistic modeling is often infeasible due to missing in-
formation on mechanistic details, kinetic laws, and parame-
ters. Qualitative models do not usually incorporate kinetic
aspects of cellular signaling and can thus not provide a
comprehensive quantitative understanding as with



Samaga and Klamt Cell Communication and Signaling 2013, 11:43 Page 16 of 19
http://www.biosignaling.com/content/11/1/43
mechanistic ODE modeling. However, many successful ap-
plications in Systems Biology have demonstrated that (i)
qualitative modeling provides a suitable framework to deal
not only with the often coarse-grained biological knowledge
but also with the typically qualitative information (trends)
contained in many biological datasets; and (ii) that the ana-
lysis of qualitative models (with or without experimental
data) may uncover important network and system’s proper-
ties on the basis of a given network topology or/and other
qualitative knowledge. Accordingly, models that are only
based on qualitative data and network topology have been
shown to be predictive tools that are able to provide con-
structive hypotheses (see, e.g., [116] and references therein).
In this sense, key achievements of qualitative modeling ap-
proaches in large-scale signaling networks (that could argu-
ably not have been achieved by ODE modeling) are (i)
capturing and formalizing qualitative knowledge [61,67,73],
(ii) getting a broader understanding of the network function
(e.g., input–output behavior) generated by tens or hundreds
of interacting signaling molecules [59,70,71], (iii) assessing
experimental data in the context of large signaling networks
[20,60], and, more recently, (iv) the identification or/and
training of large signaling networks based on high-
throughput measurements [64,101].
In this review, we focused on interaction graphs and

logical modeling as two representatives of qualitative
modeling frameworks and showed which questions can
typically be addressed by this model class. Interaction
graphs and logical/Boolean models are related modeling
formalisms, and together with logic-based ODE models
that are derived from the logical description, these ap-
proaches can be integrated into a “modeling pipeline”
(Figure 1) allowing one to consider different levels of
complexity and successive refinements of a network
model under study. Most notably, properties of the
coarser model description are retained in the refined
model. For example, the feedback loops, signaling paths
and global interdependencies in a logical model are
equivalent to the ones of the interaction graph from
which the logical model was constructed. One can easily
switch (back) to the underlying interaction graph of a lo-
gical model when representing the latter as hypergraph.
In the same way, in the continuous logic-based ODE
model, important properties of the Boolean model (and
of the interaction graph) it is derived from are con-
served. This concerns, for instance, minimal intervention
sets, but also the steady states: (logical) steady states of
the Boolean model are also steady states of the continu-
ous BooleCube or normalized HillCube models. For the
non-normalized HillCubes, it can be shown that the
continuous model has a steady state in the neighbor-
hood of each steady state of the Boolean model, as long
as the Hill coefficient is sufficiently large [18]. Further-
more, the interaction graph associated with the ODE
model is (apart from additional negative self-loops aris-
ing from the degradation reactions) identical with the
interaction graph underlying the logical model [18].
Thus, all network properties extracted from the inter-
action graph structure including, for example, all feed-
back loops and signaling paths or predictions of
qualitative effects of perturbations through the depend-
ency matrix, are still valid in the refined modeling
formalism.
The whole modeling pipeline discussed above and

shown in Figure 1 is supported by the software
CellNetAnalyzer [52]. This MATLAB package provides a
user-friendly environment for biological network analysis
and comprises many methods and algorithms for the
analysis of interaction graphs and logical models of cel-
lular signaling networks. In addition, the Odefy package
[96] enabling the conversion of logical to ODE models is
integrated as a plugin. The user can switch between the
three modeling formalisms on demand and “on the fly”.
Tables 1 and 2 as well as Figures 3, 4, and 6 were com-
puted/generated by CellNetAnalyzer (Figures 4 and 6
with the help of the Odefy plugin).
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