

RESEARCH Open Access

Cytosolic Ca²⁺ shifts as early markers of cytotoxicity

Philippe Wyrsch[†], Christian Blenn[†], Theresa Pesch, Sascha Beneke and Felix R Althaus^{*}

Abstract

The determination of the cytotoxic potential of new and so far unknown compounds as well as their metabolites is fundamental in risk assessment. A variety of strategic endpoints have been defined to describe toxin-cell interactions, leading to prediction of cell fate. They involve measurement of metabolic endpoints, bio-energetic parameters or morphological cell modifications. Here, we evaluated alterations of the free cytosolic Ca^{2+} homeostasis using the Fluo-4 dye and compared results with the metabolic cell viability assay Alamar Blue. We investigated a panel of toxins $(As_2O_3, gossypol, H_2O_2, staurosporine, and titanium(IV)-salane complexes) in four different mammalian cell lines covering three different species (human, mouse, and African green monkey). All tested compounds induced an increase in free cytosolic <math>Ca^{2+}$ within the first 5 s after toxin application. Cytosolic Ca^{2+} shifts occurred independently of the chemical structure in all tested cell systems and were persistent up to 3 h. The linear increase of free cytosolic Ca^{2+} within the first 5 s of drug treatment correlates with the EC_{25} and EC_{75} values obtained in Alamar Blue assays one day after toxin exposure. Moreover, a rise of cytosolic EC_{20} was detectable independent of induced cell death mode as assessed by caspase and poly(ADP-ribose) polymerase (PARP) activity in HeLa versus MCF-7 cells at very low concentrations. In conclusion, a cytotoxicity assay based on EC_{20} shifts has a low limit of detection (LOD), is less time consuming (at least 24 times faster) compared to the cell viability assay Alamar Blue and is suitable for high-troughput-screening (HTS).

Keywords: Alamar blue, Arsenic trioxide, Fluo-4, Gossypol, H₂O₂, Staurosporine

Background

The development of assays estimating the cytotoxic potential of drugs and chemicals is of fundamental interest in early risk assessment to prioritize them for further testing. Moreover, a few years ago, the European Union (EU) initiated a regulation for the Registration, Evaluation and Authorisation of Chemicals (REACH). Around 30 000 chemical substances, which are manufactured, imported or, used in the EU require validation [1,2]. The implementation of REACH will increase the demand of cytotoxicity testing and risk assessment.

In the past, a variety of different biological endpoints have been defined for cytotoxicity testing. These include the assessment of energy status (ATP depletion, ATP/ADP ratio), cell membrane integrity (Neutral red, Trypan blue, lactate dehydrogenase (LDH) leakage), DNA-strand

breaks (COMET) as well as metabolic parameters (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Alamar Blue) [3-5]. The evaluation of these parameters is often time and cost intensive and several different endpoints must be considered for a final decision.

The determination of metabolic activity using the Alamar Blue viability assay is based on mitochondrial hydrolase activity that is generally affected by many different drugs as well as radiation [6-8]. Blue resazurin is metabolized into pink resorufin by viable cells and this color change quantifies the amount of intact cells (Figure 1A). Here, we evaluated the toxicity of four model compounds in adherent cell cultures from three different species: human cervical (HeLa) and breast cancer cells (MCF-7), murine fibroblasts and kidney epithelial cells from African green monkey (Vero 76) (Figure 2A, B). We compared the cytotoxicity of arsenic trioxide (As₂O₃), gossypol, hydrogen peroxide (H₂O₂) and staurosporine in Alamar Blue assays with toxin-induced elevations of cytosolic Ca²⁺ (Figure 1C) measured by Fluo-4 (Figure 1B). The choice of these test

Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, Zurich CH-8057, Switzerland

^{*} Correspondence: felix.althaus@vetpharm.uzh.ch

[†]Equal contributors

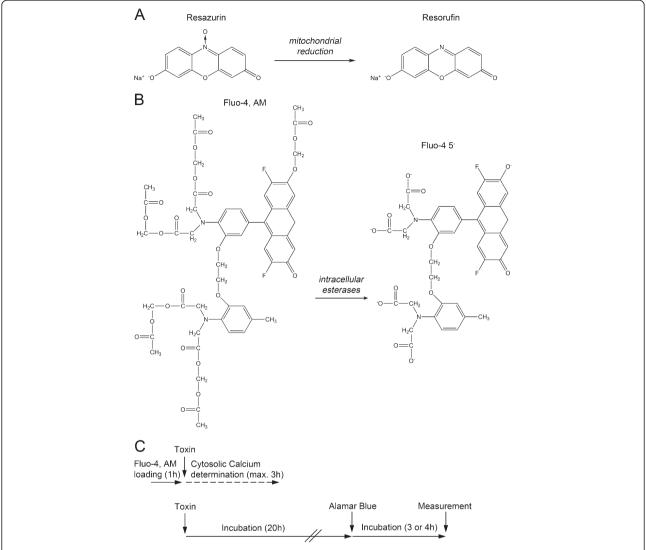
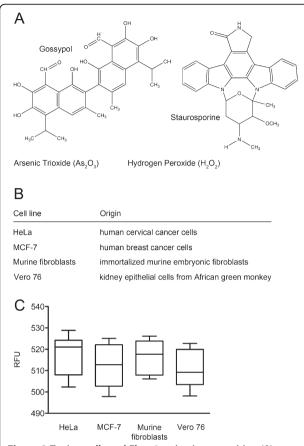



Figure 1 Principle and experimental setup for cytotoxicity determination. (A) Alamar Blue conversion (B) Principle of Fluo-4 assay for free cytosolic Ca^{2+} determination (C) Experimental time line for Fluo-4 and Alamar blue assays as investigated in this study.

compounds aims to cover a broad spectrum of different chemical structures and cytotoxicity mechanisms:

- 1. $\mathrm{As_2O_3}$ cytotoxicity is characterized by activation of the caspase cascade, simultaneous stress kinase signaling, the generation of reactive oxygen species (ROS) oxidizing macromolecules, and a disturbed endoplasmic reticulum function [9-13]. However, the detailed mechanisms by which arsenic interferes with living cells are not fully understood.
- 2. The racematic organic compound gossypol isolated from cotton seed and its metabolites display a wide pattern of cytotoxic cell alterations because of the complexity of gossypol chemistry and its potential chemical reactions with other macromolecules. Gossypol cytotoxicity includes ROS induction,
- microsomal enzyme inhibition, glutathione-S-transferase inhibition, mitochondrial dysfunction, caspase dependent and independent cell death associated with DNA degradation, and was described to interfere with the anti-apoptotic bcl-2 protein [14-18].
- 3. In this study, H₂O₂ is used as surrogate for ROS. It oxidizes directly macromolecules including lipids, proteins and DNA. This can lead to a complex cytotoxicity response with the involvement of stress activated kinases, caspase and calpain activation, mitochondrial apoptosis induction factor (AIF) translocation, endoplasmic reticulum stress, nuclear poly(ADP-ribosylation), DNA degradation and many more [19-22].
- 4. The bacterial alkaloide staurosporine is intensively investigated as inducer of a classical apoptotic cell

Figure 2 Toxins, cells and Fluo-4 activation capacities. (A) Chemical structures of the investigated compounds (B) List of mammalian cells analyzed in this study (C) HeLa, MCF-7, murine fibroblasts and Vero 76 cells were incubated with Fluo-4, AM as described in Methods and relative fluorescent (RFU) was determined (mean±SD; n=8).

death. It was initially described as an inhibitor of protein kinases [23-25]. On cellular level it leads to interruption of mitochondrial membranes, resulting in cytochrome c efflux and, as a consequence, to caspase dependent cell death [26-28].

The Alamar Blue assay was considered as a benchmark cytotoxicity test because of its improved performance compared to other pertinent assays, e.g. detection of cell densities as low as 200 cells/well [29,30]. Moreover, the Alamar Blue viability assay is suitable for high-throughput-screening (HTS) to identify cytotoxic compounds regardless of the chemical class and the underlying mechanism.

Changes in free cytosolic Ca^{2+} were investigated using the fluorescent Ca^{2+} binding dye Fluo-4 during the application of four toxins in all cell lines (Figure 1B). Cellular calcium levels are tightly regulated in cells. Under physiological conditions the Ca^{2+} concentration in the cytosol is several magnitudes below the Ca^{2+} in the extracellular space (10^{-7} M versus 10^{-3} M, respectively [31]). Multiple

cellular Ca²⁺ stores contribute to the maintenance of Ca²⁺ homeostasis and virtually all cell organelles control the transport of Ca²⁺ across their membranes to regulate organelle/cellular function [31]. It is well established that imbalances in cellular Ca²⁺ homeostasis can lead to a variety of different cell stress responses including the induction of cell death [32].

In our study, we focussed on the sensitivity, the speciesspecificity and the limit of detection (LOD) of the Fluo-4 Ca²⁺ assay. Sensitivity in our setting is defined as the ability to detect a significant effect of the used compounds at a specified concentration, whereas LOD is the lowest concentration level determined to be statistically different from blank. Here we show that As₂O₃, gossypol, H₂O₂ and staurosporine induce a dose-dependent increase in cytosolic Ca²⁺ at lethal (EC₇₅) and sublethal (EC₂₅) concentrations immediately after application in all tested cell lines. The cytosolic Ca²⁺ elevation follows linear kinetics for the first 5 s under all test conditions. Cytosolic Ca²⁺ shifts occur independent of the chemical structure of the toxin in all tested cell systems and are persistent up to 3 h. Moreover, the increase of free cytosolic Ca²⁺ is detectable independent of the mode of cell death as investigated by caspase and PARP activity. Therefore, we suggest the determination of early cytosolic Ca2+ shifts as a rapid, highly efficient, inexpensive cytotoxicity test that is at least as sensitive as the established metabolic assay Alamar Blue.

Results

The Ca²⁺ sensitive marker Fluo-4 is equally bio-activated in human, murine and monkey cells

Cytosolic Ca^{2+} was assessed using the fluorescence dye Fluo-4 (Figure 1B,C). This displays a high affinity to complex with Ca^{2+} ions (K_D of 345 nM) after its intracellular bio-activation by esterases [33]. Therefore, we first investigated the background fluorescence without any cytotoxic stress in HeLa, MCF-7, murine fibroblasts and Vero 76 cells to exclude any cell specific differences of Fluo-4, AM uptake and metabolism. We detected no differences between the tested cell lines under standard experiment conditions (Figure 2C).

The EC₂₅ and EC₇₅ values of As₂O₃, gossypol, H₂O₂ and staurosporine assessed in Alamar blue assays correlate with immediate cytosolic Ca²⁺ rises in HeLa cells

We investigated the cytotoxic potential of the four toxins of interest in Alamar Blue viability assays as described in Methods (Figure 1A,C) and tested afterwards lethal and sublethal concentrations against changes in cytosolic Ca²⁺ homeostasis. The cytosolic Ca²⁺ levels remained unaffected for the whole measuring period in the absence of a toxic insult (Additional file 1A).

As₂O₃ reduced the cell viability of HeLa cells dose dependently in Alamar Blue assays (Figure 3A). EC₂₅ and

EC₇₅ values of 5 and 50 μM were obtained, respectively. These concentrations were analyzed in Fluo-4 assays. Indeed, As_2O_3 provoked a cytosolic Ca^{2+} increase that was persistent until the end of the measurement (1800 s, Additional file 2A) in a dose-dependent fashion. Cytosolic Ca^{2+} rose immediately after As_2O_3 application and followed linear kinetics within the first 5 s (Figure 3A). The cytosolic Ca^{2+} shifts differed significantly between 5 and 50 μM As_2O_3 already at this early time point (2.4±1.94 RFU versus 7.7±2.78 RFU; Figure 3A). The differences in cytosolic Ca^{2+} increases reflect the cytotoxicity values in Alamar Blue assays one day after toxin challenge, but already after 5 s.

Next, racematic gossypol was tested in Alamar Blue assays and compared with Fluo-4 analyses. Alamar Blue EC_{25} (75 μ M) as well as EC_{75} (100 μ M) induced cytosolic Ca^{2+} shifts in HeLa cells (Figure 3B, Additional file 2B). The increase of cytosolic Ca^{2+} signals was consistent for the whole period of observation (1800 s; 95.3±9.54 RFU versus 134.3±4.24 RFU, Additional file 2B). Interestingly, the Ca^{2+} increases followed linear kinetics within the first 5 s after treatment and manifested dose dependent differences at this early time point (Figure 3B).

Similar results were obtained when HeLa cells were challenged with oxidative stress inducer H_2O_2 (Figure 3C, Additional file 2C). 0.5 mM (EC₂₅) and 2 mM (EC₇₅) of H_2O_2 were analyzed regarding cytosolic Ca^{2+} imbalances. A dose dependency in the cytosolic Ca^{2+} response was already significant within the first 5 s of measurements (Figure 3C) and it was maintained until the end of the experiments (Additional file 2C).

Staurosporine toxicity was analyzed in a similar way (Figure 3D, Additional file 2D). Again, 400 nM (EC₂₅) and 1 μ M (EC₇₅) determined in Alamar Blue assays correlate with linear increases in cytosolic Ca²⁺ levels for the first 5 s of Fluo-4 measurements (Figure 3D). In a next step, HeLa cells were challenged with doses below the EC₂₅ of the corresponding toxin. There were no differences detectable between the control and the As₂O₃, gossypol and staurosporine treated cells after 5 s (Additional file 1E). These results are identical to the data obtained with Alamar Blue assay after 24 h. Again, no significant difference was measured comparing the control cells with the As₂O₃, gossypol and staurosporine treated cells (Additional file 1F).

Additionally, we compared two structurally highly related titanium(IV)-salane complexes (Additional file 1G) for their toxicity in HeLa cells. As described earlier, both showed expected behaviour in Alamar Blue assay, i. e. cytotoxicity of TC52 and no impact on viability by TC53 [34]. These findings were reproduced in our assay, with enhanced cytosolic Ca^{2+} fluxes at EC_{25} and EC_{75} in case of TC52, and no significant variation of cytosolic Ea^{2+} levels by TC53 (Additional file 1H,I).

In a next set of experiments we tested the hypothesis that prolonged incubation with an established calcium channel activator can also promote cell death due to an overload in free cytosolic Ca2+ (Additional file 3). Hela cells express purinergic P2X transmembranous Ca²⁺ channels and a known ligand for this type of plasma membrane channels is ATP, but only when applied in the extracellular environment [35-38]. The toxicity of extracellular ATP is well established in a variety of cell types and was shown to be mediated by especially P2X₇ activation in HeLa cells [35,39-45]. Therefore we investigated the toxicity of ATP in this cell type and found that the EC₂₅ as well as the EC₇₅ deduced from Alamar blue assays (Additional file 3A) are reflected in dose dependent elevations of free cytosolic Ca²⁺ when assessed with the Fluo-4 dye (Additional file 3B). Again, this continuous over activation of P2X and possibly others related channels due to the specific ligand ATP results in a linear increase in the Fluo-4 signal within the first 5 s of treatment (Additional file 3C).

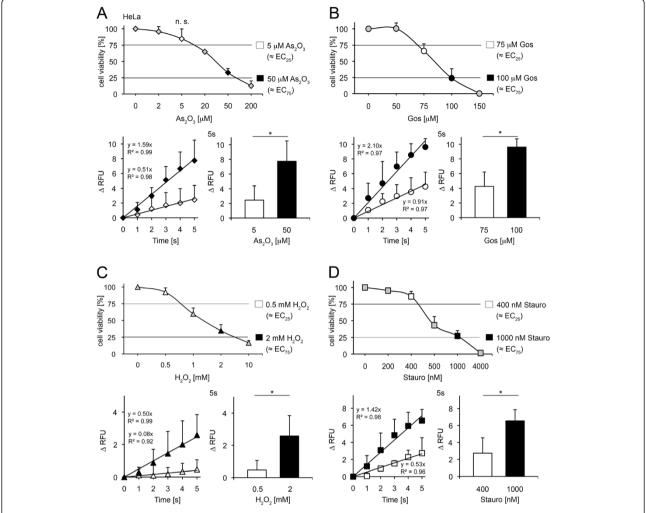
Early changes of cytosolic Ca^{2+} accompany As_2O_3 , gossypol, H_2O_2 and staurosporine induced toxicity in MCF-7 cells

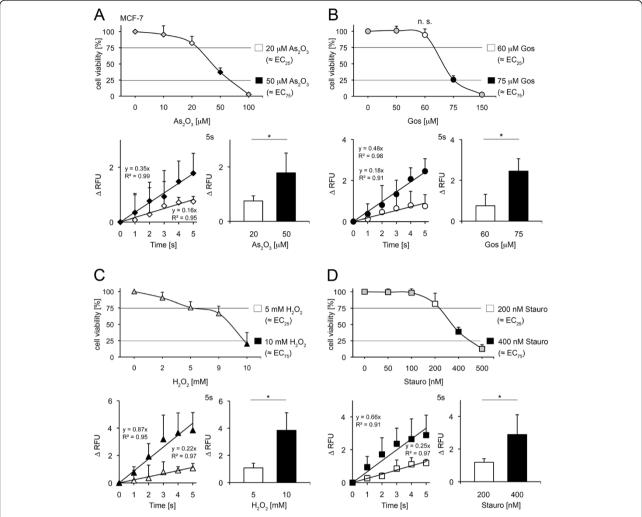
We analyzed the toxicity of the four test compounds in the second human cell line MCF-7 (Figure 4A-D, Additional file 4A-D). The EC₂₅ and EC₇₅ concentrations of all toxins (20 μ M and 50 μ M As₂O₃, 60 μ M and 75 μ M gossypol, 5 mM and 10 mM H₂O₂, 0.2 μ M and 0.4 μ M staurosporine) were analyzed in Fluo-4 assays directly after application. Cytoplasmic Ca²⁺ was not altered in untreated control MCF-7 cells within 2 h (Additional file 1B). All toxins generated a dose dependent increase in cytosolic Ca²⁺ with linear kinetics within the first 5 s of the measurements (Figure 4A-D). Values at the EC₂₅ and EC₇₅ doses varied significantly not only at time point 5 s, but also for at least 30 min after the toxin treatment for all tested drugs (Additional file 4A-D).

Drug-dependent elevations of cytosolic Ca^{2+} indicate As_2O_3 , gossypol, H_2O_2 and staurosporine cytotoxicity in murine fibroblasts

In the next set of experiments, the cytotoxicity of the drugs in murine fibroblasts was examined (Figure 5A-D, Additional file 5A-D). As expected, untreated control fibroblasts did not show any alteration in free cytosolic Ca²⁺ levels (Additional file 1C).

Whereas 45 μ M As₂O₃ killed around 25% of murine fibroblasts, 50 μ M represents the EC₇₅ value in the Alamar Blue assay one day after drug exposure. By using these concentrations in Fluo-4 assays, a linear increase of cytosolic Ca²⁺ within the first 5 s in the presence of As₂O₃ was detected (2.6±1.14 RFU versus 9.6±1.20 RFU). The cytoplasmic Ca²⁺ slopes of the tested toxin concentrations were dose dependent and the RFUs at 5 s (Figure 5A) and 3 min (Additional file 5A) differed significantly between sublethal and lethal amounts of As₂O₃.



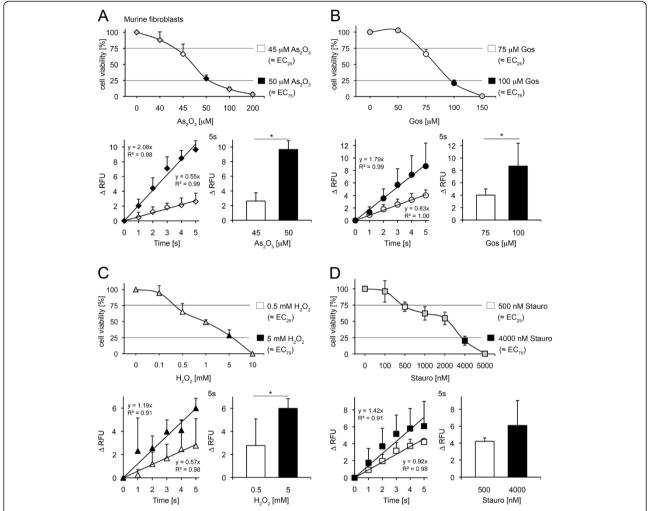

Figure 3 Assessment of As₂O₃, gossypol, H₂O₂ and staurosporine-induced toxicity in HeLa cells. (A) Upper panel: Alamar Blue assay in presence of As₂O₃ as indicated (mean±SD; n≥3; n.s. not significant; t test). Lower panel: Fluo-4 analysis of 5 μM and 50 μM As₂O₃ treated cells (mean±SD; *p<0.025; n=3; t test) (B) Upper panel: Alamar Blue assay in presence of gossypol as indicated (mean±SD; n≥3). Lower panel: Fluo-4 analysis of 75 μm and 100 μM gossypol treated cells (mean±SD; *p<0.0025; n≥4; t test) (C) Upper panel: Alamar Blue assay in presence of H₂O₂ as indicated (mean±SD; n≥4). Lower panel: Fluo-4 analysis of 0.5 mM and 2 mM H₂O₂ treated cells (mean±SD; *p<0.025; n≥3; t test) (D) Upper panel: Alamar Blue assay in presence of staurosporine as indicated (mean±SD; n≥3). Lower panel: Fluo-4 analysis of 400 nM and 1000 nM staurosporine treated cells (mean±SD; *p<0.05; n=3; t test).

Gossypol (75 μ M and 100 μ M), H₂O₂ (0.5 mM and 5 mM) and staurosporine (0.5 μ M and 4 μ M) – concentration indicative of sublethal and lethal cell stress – were analysed in a similar way (Figure 5B-D, Additional file 5B-D). All these toxins confirmed a functional relationship between the applied dose and immediate alteration in cytoplasmic Ca²⁺ homeostasis. Moreover, the dose dependent differences in Fluo-4 determinations lasted up to 30 min post treatment (Additional file 5B,C). However, despite a significant rise in cytosolic Ca²⁺ level compared to control values at all time points tested, the observed increase between EC₂₅ and EC₇₅ was not statistically different after staurosporine treatment (Figure 5D and Additional file 5D).

Determination of As₂O₃, gossypol, H₂O₂ and staurosporine mediated cytotoxicity in Vero 76 cells

Vero 76 cells were analyzed in Fluo-4 assays using the EC_{25} and EC_{75} values for As_2O_3 , gossypol, H_2O_2 and staurosporine as assessed in Alamar Blue assays (Figure 6A-D, Additional file 6A-D). The cytosolic Ca^{2+} level remained robust during the whole analysis period without any toxic challenge (2 h, Additional file 1D).

Sublethal (35 μ M) and lethal (100 μ M) concentrations of As_2O_3 were investigated in Fluo-4 assays (Figure 6A). A dose-dependent linear rise in cytosolic Ca^{2+} was observed within 5 s after toxin treatment (1.26±0.83 RFU versus 3.6±0.81 RFU, Figure 6A). At this time point the cytosolic Ca^{2+} signals showed significant


Figure 4 Assessment of As₂O₃, gossypol, H₂O₂ and staurosporine-induced toxicity in MCF-7 cells. (A) Upper panel: Alamar Blue assay in presence of As₂O₃ as indicated (mean±SD; n≥4). Lower panel: Fluo-4 analysis of 20 μM and 50 μM As₂O₃ treated cells (mean±SD; *p<0.05; n=3; t test) (**B**) Upper panel: Alamar Blue assay in presence of gossypol as indicated (mean±SD; n≥4; n.s. not significant; t test). Lower panel: Fluo-4 analysis of 60 μm and 75 μM gossypol treated cells (mean±SD; *p<0.025; n=4; t test) (**C**) Upper panel: Alamar Blue assay in presence of H₂O₂ as indicated (mean±SD; n≥4). Lower panel: Fluo-4 analysis of 5 mM and 10 mM H₂O₂ treated cells (mean±SD; *p<0.005; n≥3; t test) (**D**) Upper panel: Alamar Blue assay in presence of staurosporine as indicated (mean±SD; n≥4). Lower panel: Fluo-4 analysis of 200 nM and 400 nM staurosporine treated cells (mean±SD; *p<0.05; n≥3; t test).

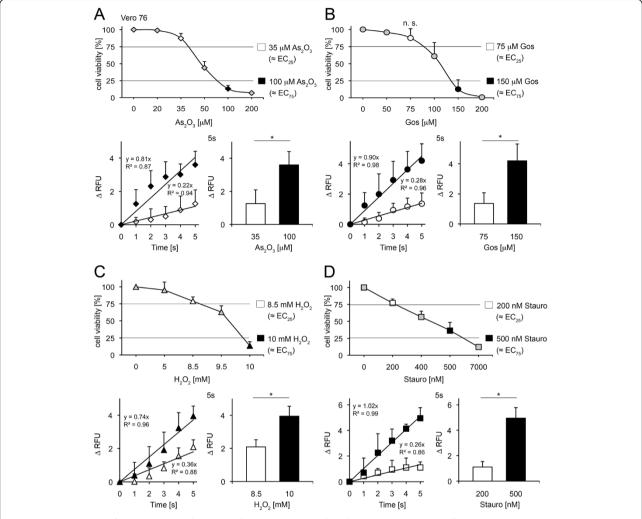
differences between the two doses, which were persistent until 3 h after drug exposure (Additional file 6A).

Gossypol toxicity was investigated at the concentrations of 75 μ M and 150 μ M in Vero 76 cells (Figure 6B). The increase of cytosolic Ca²⁺ following drug treatment was linear for both concentrations analysed in a dose dependent manner until 5 s post application. The fluorescence units were significantly different between 75 μ M and 100 μ M gossypol at this time point (1.4±0.71 RFU versus 4.2±1.12 RFU). The difference in rise of cytosolic Ca²⁺ levels seen at 5 s was consistently maintained during the whole period of observation (3 min, 30 min and 3 h, Additional file 6B).

The EC $_{25}$ (8.5 mM) and EC $_{75}$ (10 mM) for H $_2$ O $_2$ in Vero 76 cells as assessed in Alamar Blue viability assays were investigated in Fluo-4 assays (Figure 6C). H $_2$ O $_2$ induced a very fast increase of cytosolic Ca $^{2+}$ at the tested concentrations that was almost linear for the whole time of analysis (30 min, Additional file 6C). The free cytosolic Ca $^{2+}$ elevations of EC $_{25}$ and EC $_{75}$ values were significantly different from control and displayed dosedependent behaviour already 5 s after drug treatment (Figure 6C).

Comparable results were obtained when Vero 76 cells were challenged with 200 nM or 500 nM staurosporine respectively (Figure 6D, Additional file 6D). Again, as early as 5 s after toxin treatment the cytosolic Ca^{2+} reached

Figure 5 Assessment of As₂O₃, gossypol, H₂O₂ and staurosporine-induced toxicity in murine fibroblasts. (A) Upper panel: Cells were treated with increasing concentrations of As₂O₃ as indicated and afterwards cell viability was analysed with Alamar Blue (mean±SD; n≥4). Lower panel: Fluo-4 analysis of 45 μM and 50 μM As₂O₃ treated cells (mean±SD; *p<0.0001; n≥4; t test) (**B**) Upper panel: Cells were treated with increasing concentrations of gossypol as indicated and afterwards cell viability was analysed with Alamar Blue (mean±SD; n≥4). Lower panel: Fluo-4 analysis of 75 μM and 100 μM gossypol treated cells (mean±SD; *p<0.05; n=4; t test) (**C**) Upper panel: Alamar Blue assay in presence of H₂O₂ as indicated (mean±SD; n≥3). Lower panel: Fluo-4 analysis of 0.5 mM and 5 mM H₂O₂ treated cells (mean±SD; *p<0.01; n≥3; t test) (**D**) Upper panel: Alamar Blue assay in presence of staurosporine as indicated (mean±SD; n≥3). Lower panel: Fluo-4 analysis of 500 nM and 4000 nM staurosporine treated cells (mean±SD; n. s. not significant; n≥3; t test).

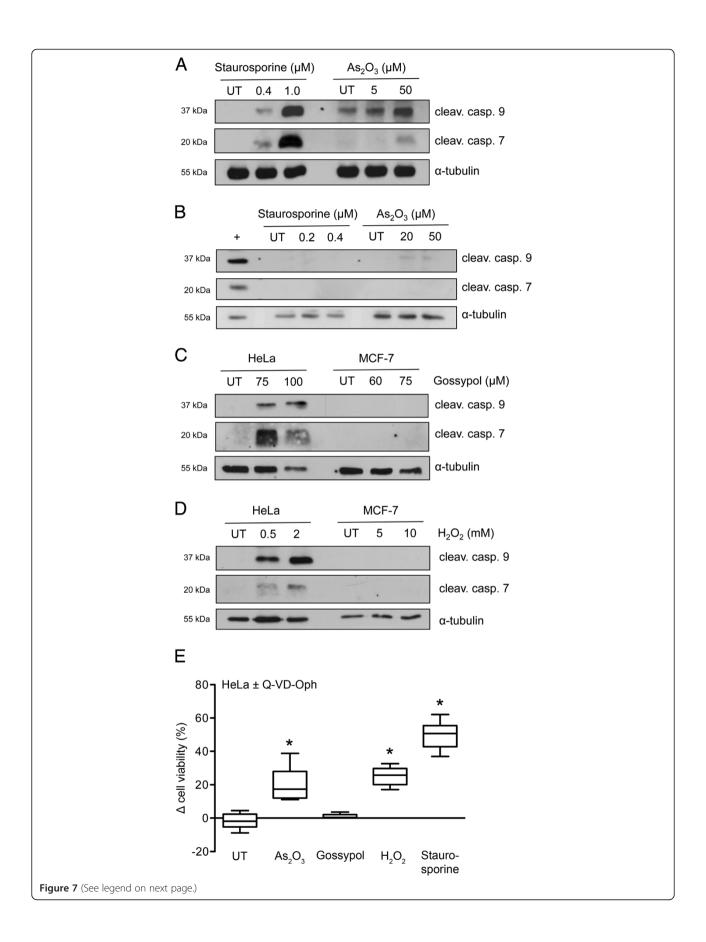

significant differences between sublethal (200 nM) and lethal (500 nM) concentrations (1.1 \pm 0.43 RFU versus 5.0 \pm 0.83 RFU) evident still at 3 h after drug application (Additional file 6D).

Immediate early drug-induced Ca²⁺ shifts occur independent of the mode of cell death

We have identified cytosolic Ca^{2+} alterations as an early hallmark of cell death in all tested cell lines, regardless of species origin and of toxin (Figures 3, 4, 5 and 6). Next, we set out to elucidate the mode of cell death in the human cell lines HeLa and MCF-7. When treated with the equitoxic amounts (EC₂₅ and EC₇₅) of the four test compounds, caspase 7 and 9 were only processed in

HeLa cells into their active form as assessed by Western blot analysis 4 h after treatment (Figure 7A-D). By contrast, the cell death in MCF-7 cells was not mediated by activated caspases. The role of caspases in HeLa cells was confirmed by a parallel application of the caspase inhibitor Q-VD-OPh (20 μM) in Alamar Blue viability assays (Figure 7E). Q-VD-OPh could only interfere with As_2O_3 , H_2O_2 and staurosporine-induced cell death, whereas gossypol-mediated viability reduction was not affected by caspase inhibition, despite their activation by all tested toxins and concentration (Figure 7A,C and D).

Next, we analysed nuclear PARP activity, which is induced immediately after genotoxic insult by binding to


Figure 6 Assessment of As₂O₃, gossypol, H₂O₂ and staurosporine-induced toxicity in Vero 76 cells. (A) Upper panel: Alamar Blue assay in presence of As₂O₃ as indicated (mean±SD; $n \ge 3$). Lower panel: Fluo-4 analysis of 35 μM and 100 μM As₂O₃ treated cells (mean±SD; *p < 0.025; n = 3; t test). (B) Upper panel: Alamar Blue assay in presence of gossypol as indicated (mean±SD; $n \ge 3$; n.s. not significant; t test). Lower panel: Fluo-4 analysis of 75 μm and 150 μM gossypol treated cells (mean±SD; *p < 0.025; n = 4; t test) (C) Upper panel: Alamar Blue assay in presence of H₂O₂ as indicated (mean±SD; $n \ge 3$). Lower panel: Fluo-4 analysis of 8.5 mM and 10 mM H₂O₂ treated cells (mean±SD; *p < 0.025; $n \ge 3$; t test) (D) Upper panel: Alamar Blue assay in presence of staurosporine as indicated (mean±SD; $n \ge 4$). Lower panel: Fluo-4 analysis of 200 nM and 500 nM staurosporine treated cells (mean±SD; *p < 0.0025; n = 3; t test).

strand breaks [46,47]. Subsequent PAR formation accelerates repair processes [47-49], but if PAR is produced in excess due to cytotoxic drug concentrations it also promotes energy collapse, free cytosolic $\mathrm{Ca^{2+}}$ overload and the toxic translocation of apoptosis inducing factor (AIF) from mitochondria to the nucleus, leading finally to cell death [19-21,50]. Therefore, nuclear PAR accumulation was investigated 5 min after lethal (EC₇₅) challenges with $\mathrm{As_2O_3}$, gossypol, $\mathrm{H_2O_2}$ and staurosporine in both HeLa (Figure 8A) and MCF-7 cells (Figure 8B). Only the application of EC₇₅ levels of $\mathrm{H_2O_2}$ but not of $\mathrm{As_2O_3}$, gossypol and staurosporine caused detectable levels of nuclear PAR 5 min after treatment in immunofluorescence microscopy experiments. Interestingly, in HeLa cells the PARP

inhibitor PJ-34 could not only interfere with $\rm H_2O_2$ -, but also with $\rm As_2O_3$ - and staurosporine-induced cell death (Figure 8C), pointing to PARP activity as a common feature in these different cell killing agents, even if PAR levels are below detection limit. By contrast, the application of PJ-34 was exclusively protective in $\rm H_2O_2$ -induced loss of viability in MCF-7 cells (Figure 8D). Gossypol-induced cell death was not affected by PARP inhibition in both tested cell lines.

Discussion

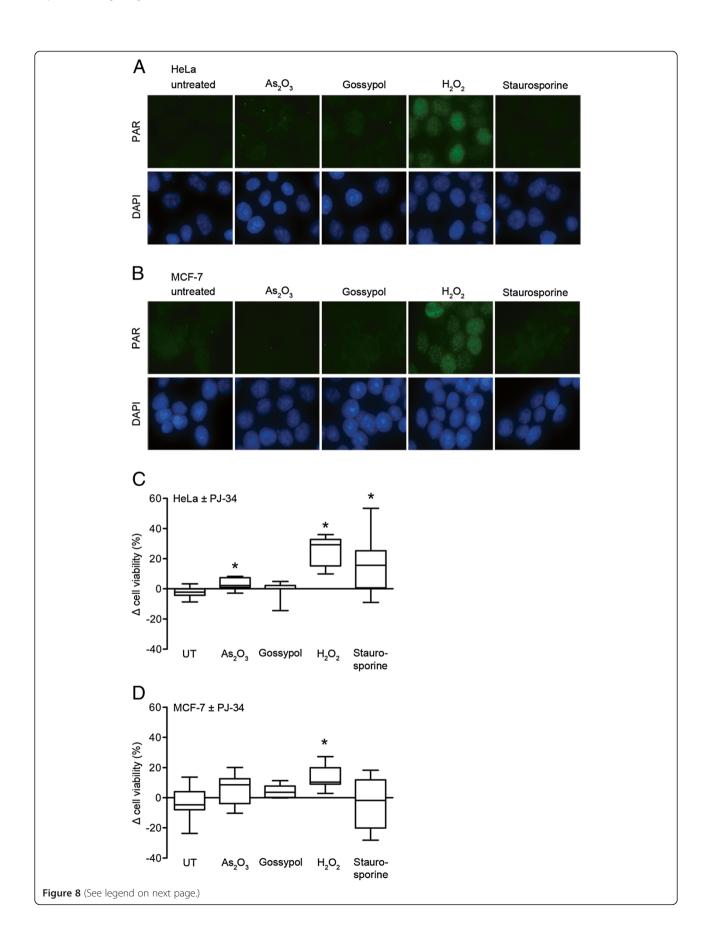
The development of drugs and chemicals requires extensive cytotoxicity testing. Several tests rely on the energy status and the oxidative capacity of cells, i.e. the MTT

(See figure on previous page.)

Figure 7 Caspase activation after sublethal and lethal doses of As₂O₃, gossypol, H₂O₂ and staurosporine in HeLa and MCF-7 cells.

(A) Western blot analyses of cleaved caspase 7 and 9 after staurosporine and As_2O_3 treatment in HeLa cells 4 h post treatment. A-tubulin is shown as loading control. (B) Western blot analyses of cleaved caspase 7 and 9 after staurosporine and As_2O_3 treatment in MCF-7 cells 4 h post treatment. A-tubulin and 1 μ M staurosporine treated HeLa cells are shown as controls. (C) Western blot analyses of cleaved caspase 7 and 9 after gossypol treatment as indicated in HeLa and MCF-7 cells 4 h post treatment with α -tubulin as loading control. (D) Western blot analyses of cleaved caspase 7 and 9 after H_2O_2 treatment as indicated in HeLa and MCF-7 cells 4 h post treatment with α -tubulin as loading control. (E) Cell viability was assessed with Alamar Blue in HeLa cells in presence or absence of Q-VD-OPh (20 μ M). Cells were challenged with EC₇₅ values of As₂O₃, gossypol, H_2O_2 and staurosporine as indicated. Differences in cell survival of Q-VD-OPh plus toxin compared to toxin only treatment are shown (mean \pm SD; *p<0.05; n=7; t test).

and the Alamar Blue assay [3]. Both can be applied in an automated way on multi-well plates for HTS. But there are certain limitations, as the final readout depends on two incubation steps: the exposure to the substance and the biotransformation of the reagent. Additionally, the cost effectiveness is a serious factor in large scale screening.


In recent publications, we reported a correlation between cytosolic Ca²⁺ increase and cell death induced by oxidative stress [20,21]. Using a panel of different biological and pharmacological approaches we investigated distinct Ca²⁺ sources merging in a composite pool of toxin dependent increase in free cytosolic Ca²⁺. The enzymatic activities of the nuclear PARP1 in conjunction with its counterpart poly(ADP-ribose) glycohydrolase (PARG) are responsible for extracellular Ca²⁺ gated by transmembranous transient receptor mediated Ca²⁺ channel (TRPM2). On the other hand, free cytosolic Ca²⁺ origins also from intracellular sources. For instance, protein markers of endoplasmic reticulum (ER) stress were detected pointing to Ca²⁺ released from ER stores in parallel. Blocking the influx of Ca²⁺ protected the cells from oxidative insults.

In order to see whether Ca²⁺ shifts are generally predictive of cytotoxicity, we investigated here a wide spectrum of toxins in cell lines from different species origin. The toxicity of arsenic trioxide, hydrogen peroxide, gossypol and staurosporine was tested in human, mouse, and monkey cells using Alamar Blue assay. These compounds have different cellular targets and induce different cell death pathways, ranging from general macromolecule damage, especially to DNA, by oxidative stressor H₂O₂ to the apoptotic model compound staurosporine, which has been shown to inhibit a wide spectrum of kinases without damaging DNA. The toxicity data were compared to cytosolic Ca2+ measurements at the respective sublethal (EC25) and lethal (EC75) doses. Our fluorimetric assay revealed in all settings a rapid rise in cytosolic Ca²⁺, regardless of species-origin and toxin applied. Moreover, it has a low LOD. Thus, our data provide evidence that Ca2+ shifts are a common denominator in cytotoxic insults, independent of the mode of cell death. Interestingly, this can be monitored with an unmatched speed and at doses that show hardly significant changes in cell viability assays. Even sublethal (EC₂₅) toxin concentrations generated slopes of free cytosolic Ca2+

increases significantly different from solvent controls indicative for the superior sensitivity of the Fluo-4 Ca²⁺ assay. Moreover, this assay discriminates between structurally closely related titanium(IV)-salane complexes, i.e. toxic TC52 and non-toxic TC53. In an additional data set, we tested the toxicity of a physiological compound, i.e. ATP. High extracellular concentrations have been reported to induce cell death [35,39-45]. Indeed, we also detected free cytosolic Ca2+ shifts in our assay after application of ATP in a similar setting as before (EC₂₅ and EC₇₅). However, low dose extracellular ATP induces Ca²⁺ shifts if cells express members of P2X and P2Y transporter family, as it is the case in HeLa cells [38]. Therefore, in this specific cell line and setting, we cannot rule out the occurrence of false-positives. Falsely categorizing a substance as positive or negative due to specific characteristics of the tested cells is always a risk in cytotoxicity screens. For example bleomycin, a well-established clastogenic agent and antitumor drug has to be taken up via the hCT2-transporter, which is the rate-limiting step determining its toxic activity as reviewed recently [51]. To avoid false-negative and false-positive results we suggest testing a panel of cell lines, which differ in their receptor repertoire. It can be expected that physiological molecules will obviously induce cellular responses including Ca²⁺ dependent signaling processes. In contrast, engineered substances inducing a rise in free cytosolic Ca²⁺ as presented in this study are indicative of unwanted biological effects. Therefore we conclude that cytosolic Ca²⁺ increases within the first 5 s of exposure as measured with Fluo-4 dye are predictive of the cytotoxic potential of a xenobiotic compound.

Conclusions

Our newly developed assay is applicable in cells from different species and with a wide variety of toxins, acting on different signaling pathways and modes of cell death. Measuring the free cytosolic Ca²⁺ increase in the first 5 s of exposure shows the same or even higher statistical predictivity than the standard Alamar Blue assay. Thus, this fluorimetry-based method is a rapid predictor of cytotoxicity, superior to other assays in speed and cost effectiveness.

(See figure on previous page.)

Figure 8 PAR formation and its effect on cell survival after lethal doses of As_2O_3, gossypol, H_2O_2 and staurosporine in HeLa and MCF-7 cells. (A) PAR detection by immunofluorescence in HeLa cells treated with 50 μM As_2O_3, 100 μM gossypol, 2 mM H_2O_2 or 1 μM staurosporine as described in Methods. Nuclear DAPI staining is shown as control. (B) PAR detection by immunofluorescence in MCF-7 cells treated with 50 μM As_2O_3, 75 μM gossypol, 10 mM H_2O_2 or 0.4 μM staurosporine as described with nuclear DAPI staining as control. (C) Cell viability was assessed with Alamar Blue in HeLa cells in presence or absence of PJ-34 (5 μM). Cells were challenged with EC₇₅ values of As_2O_3, gossypol, H_2O_2 and staurosporine as indicated. Differences of cell survival are shown (mean±SD; *p<0.05; n=8; t test). (D) Cell viability was assessed with Alamar Blue in MCF-7 cells in presence or absence of PJ-34 (5 μM). Cells were challenged with EC₇₅ values of As_2O_3, gossypol, H_2O_2 and staurosporine as indicated. Differences of cell survival are shown (mean±SD; *p<0.05; n=8; t test).

Methods

Cell culture

In this study HeLa, immortalized mouse embryonic fibroblasts, MCF-7 and Vero 76 cells were investigated (Figure 2B). All cell monolayers were cultured at 37° C in a water-saturated (5% CO₂) atmosphere, in complete Dulbecco's modified Eagle's medium (D-MEM, Gibco, Lucerne, Switzerland) containing 1 g/L glucose and supplemented with 10% (v/v) FBS and Penicillin/Streptomycin (Invitrogen, Lucerne, Switzerland).

Chemicals

N-(2-Quinolyl)valyl-aspartyl-(2,6-difluorophenoxy)methylketone (Q-VD-OPh) was from Calbiochem (Zug, Switzerland). N-(6-Oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide, HCl (PJ-34) was obtained from ENZO Life Sciences (Lausen, Switzerland). HOECHST 33342 was from Invitrogen. Titanium(IV)-salane complexes TC52 and TC53 were both synthesized in the Chemistry Department (Thomas Huhn Group) of University of Konstanz/Germany. All other chemicals were from Applichem (Baden-Dättwil, Switzerland), Fluka (Buchs, Switzerland), Merck (Zug, Switzerland) or Sigma. All chemicals used as inhibitors were simultaneously administered with toxin treatment.

Toxin treatment

Cells were challenged with 1 part (50 µL) H₂O₂ (Sigma, Buchs, Switzerland) diluted in OPTI-MEM I (Gibco) to the desired concentration. After 1 h, 3 parts (150 µL) complete D-MEM were added. Gossypol (Sigma) was dissolved in DMSO to a stock solution of 100 mM. Then diluted in OPTI-MEM I to the desired concentration. Staurosporine (Sigma, dissolved in DMSO to a stock solution of 1 mM) and As₂O₃ (Sigma, dissolved in H₂O alkalized with NaOH to a stock solution of 5 mM) were diluted in D-MEM directly to the concentration needed. TC52 and TC53 were dissolved in DMSO to a stock solution of 2.5 mM and diluted in D-MEM to the desired concentration. ATP Mg²⁺ salt (Sigma) was diluted in PBS supplemented with 2 mM Ca²⁺ to the concentration needed. After 30 min of treatment the ATP solution was replaced with complete D-MEM. All

toxin treatments were maintained without any alterations until the end of the experiment.

Alamar blue viability assay

Cells were seeded in 96-well-plates (15 000 cells/well) and incubated overnight (Figure 1C). Cells were treated with the toxins as described above. After 20 h (with TC52 and TC53 treatment 44 h), medium was replaced with 200 μ L D-MEM 10% (v/v) Alamar Blue (Biozol, Eching, Germany). After 3 or 4 h, fluorescence was monitored at wavelength 530 nm for excitation and 590 nm for emission in LS55 luminescence spectrometer (Perkin-Elmer, Schwerzenbach, Switzerland).

Calcium measurements

This was performed as described before [20]. Briefly, 20 000 cells/well in 96-well-plates (Costar Corning Incorporated, Baar, Switzerland) were washed twice with 49 parts of calcium-free HBSS (0.49 mM MgCl₂, 0.41 mM MgSO₄, 5.33 mM KCl, 0.44 mM KH₂PO₄, 4.17 mM NaHCO₃, 137 mM NaCl, 0.34 mM Na₂HPO₄, 5.56 mM Dextrose) supplemented with 1 part 1 M HEPES (pH 7.2) (Assay Buffer) containing CaCl₂ or not. 100 µL Fluo-4-NWdye-mix from Molecular Probes (Invitrogen) was added and incubated for 30 min at 37°C, followed by 30 min incubation in the dark at room temperature (Figure 1C). Changes in relative fluorescence units (Δ RFU) from the Fluo-4-NW-dye quantify alterations in free cytosolic Ca²⁺ concentrations (excitation/emission 485/535 nm; slits 10/15 nm) in LS55 luminescence spectrometer (Perkin-Elmer) after toxin treatment. Stock solutions of toxins were diluted in Assay Buffer to the desired concentration. Free cytosolic Ca²⁺ was monitored for the indicated time with a measure frequency of 1 s or less.

Western blot detection

Immunoblots were performed as described previously [20]. The following primary antibodies were used: anti-cleaved-caspase-7 (Asp198, Cell Signaling; 1:1 000), anti-cleaved-caspase-9 (Asp315, Cell Signaling; 1:1 000) anti- α -Tubulin (Cell Signaling; 1:5 000). All secondary antibodies were from Sigma. Equal quantities of protein were loaded into each lane for SDS-PAGE separation as controlled by the simultaneous use of α -Tubulin as internal protein standards.

Immunofluorescence of PAR

Cells were seeded on coverslips (Thermo Scientific, Allschwil, Switzerland) in 24-well-plates (Costar Corning Incorporated) and let attach overnight. The toxin treatment was performed in D-MEM for 5 min. Cells were fixed with ice-cold methanol and stored at -20°C for 7 min. Coverslips were subsequently washed twice with 1xTris buffered saline (TBS, pH 7.4, 3 min at room temperature) and incubated with Blocking Buffer (1xTBS/0.2% Tween 20 (TBST), 1% BSA) for 30 min at 37°C. Monoclonal 10H anti-poly(ADP-ribose) (PAR) antibody [52] was used as 1st antibody (diluted 1:200 in Blocking Buffer). After an incubation for 1 h at 37°C, coverslips were washed three times with TBST (each 5 min), followed by a 2nd antibody incubation (Alexa Fluor 488-conjugated, 1:200 in blocking solution) for 1 h at 37°C in the dark. Afterwards, probes were washed three times with TBST (each 5 min). DAPI staining was performed for 5 min and coverslips were washed with H₂O and dried afterwards. The samples were further processed with ProLong Antifade kit (Invitrogen) according to the manufacturer's protocol and analyzed with a fluorescence microscope (Nikon) connected to a digital camera (Kappa, Grenchen, Switzerland).

Statistical analysis

If not stated differently, all results are shown as mean±SD of the indicated number of independent experiments. All statistical analyses were calculated with Prism Software 5.0b (GraphPad Software, San Diego California USA).

Additional files

Additional file 1: Control measurements of Fluo-4 free cytosolic calcium assay. (A) HeLa cells (mean±SD, n=2). (B) MCF-7 cells (mean±S.D., n=2). (C) Murine fibroblasts (mean±SD, n=2). (D) Vero 76 cells (mean±SD, n=3). (E) Ca²⁺ shift endpoint at 5 s after 1 μ M, 2 μ M or 5 μ M As₂O₃ with (mean±SD; n≥3; t test) compared to control in HeLa cells. Ca^{2+} shift endpoint at 5 s after 5 μM, 10 μM or 75 μM gossypol with (mean±SD; n≥4; t test) compared to control. Ca²⁺ shift endpoint at 5 s after 100 nM, 200 nM or 400 nM staurosporine with (mean±SD; n≥3; t test) compared to control. (F) Alamar Blue endpoint at 24 h after 1 μ M, 2 μ M or 5 μ M As₂O₃ with (mean±SD; n≥3; t test) compared to control in HeLa cells. Alamar Blue endpoint at 24 h after 5 μM, 10 μM or 75 μM gossypol with (mean±SD; n≥3; t test) compared to control. Alamar Blue endpoint at 24 h after 100 nM, 200 nM or 400 nM staurosporine with (mean±SD; n≥3; t test) compared to control. (**G**) Chemical structures of the investigated compounds TC52 and TC53. (H) Alamar Blue endpoint at 24 h after 4 μM or 10 μM TC52 or 10 μM TC53 with (mean±SD; n=3; t test) compared to control in HeLa cells (I) Ca²⁺ shift endpoint at 5 s after 4 μM or 10 μM TC52 or 10 μM TC53 with (mean±SD; n=3; t test) compared to untreated control in HeLa cells.

Additional file 2: Impact of toxic compounds on cytosolic Ca²+ levels in HeLa cells. (A) Ca²+ shifts after 5 μ M or 50 μ M As₂O₃ with (mean \pm SD; *p<0.0005; n≥3; t test) at 1800 s. (B) Ca²+ shifts after 75 μ M or 100 μ M gossypol with (mean \pm SD; *p<0.0025; n=3; t test) at 1800 s. (C) Ca²+ shifts after 0.5 mM or 2 mM H₂O₂ with (mean \pm SD; *p<0.001; n≥4; t test) at 180 s and (mean \pm SD; *p<0.001; n≥4; t test) at 180 s. (D) Ca²+ shifts after 400 nM or 1000 nM staurosporine with (mean \pm SD; *p<0.025; n=3; t test) at 1800 s.

Additional file 3: Assessment of ATP-induced toxicity in HeLa cells. **(A)** Alamar Blue assay in presence of ATP as indicated (mean±SD; n≥4).

(**B**) Ca²⁺ shifts after 25 mM or 40 mM ATP (mean \pm SD; n \geq 7). (**C**) Statistical evaluation of 25 or 40 mM ATP treated HeLa cells in Fluo-4 analyses (mean \pm SD; *p<0.0005; n=7; t test).

Additional file 4: Impact of toxic compounds on cytosolic Ca²⁺ levels in MCF-7 cells. (A) Ca^{2+} shifts after $20~\mu M$ or $50~\mu M$ As_2O_3 with (mean $\pm SD$; *p<0.01; n=3; t test) at 10800 s. (B) Ca^{2+} shifts after $60~\mu M$ or $75~\mu M$ gossypol with (mean $\pm SD$; *p<0.001; n=3; t test) at 1800 s. (C) Ca^{2+} shifts after 5 mM or 10 mM H_2O_2 with (mean $\pm SD$; *p=0.0001; n ≥ 3 ; t test) at 1800 s. (D) Ca^{2+} shifts after 200~n M or 400~n M staurosporine with (mean $\pm SD$; *p<0.01; n=3; t test) at 180 s and (mean $\pm SD$; *p<0.005; n=3; t test) at 1800 s and (mean $\pm SD$; *p<0.005; n=3; t test) at 1800 s.

Additional file 5: Impact of toxic compounds on cytosolic Ca²⁺ levels in murine fibroblasts. (A) Ca²⁺ shifts after 45 μ M or 50 μ M As₂O₃ with (mean±SD; *p<0.025; n=4; t test) at 180 s. (B) Ca²⁺ shifts after 75 μ M or 100 μ M gossypol with (mean±SD; *p<0.025; n=3; t test) at 180 s and (mean±SD; *p=0.001; n=3; t test) at 1800 s. (C) Ca²⁺ shifts after 0.5 mM or 5 mM H₂O₂ with (mean±SD; *p<0.005; n≥3; t test) at 180 s and (mean±SD; *p<0.01; n≥3; t test) at 1800 s. (D) Ca²⁺ shifts after 500 nM or 4000 nM staurosporine with (mean±SD; not significant; n=3; t test) at 180 and 1800 s.

Additional file 6: Impact of toxic compounds on cytosolic Ca^{2+} levels in Vero 76 cells. (A) Ca^{2+} shifts after 35 μ M or $100~\mu$ M As_2O_3 with (mean \pm SD; *p<0.0025; n \geq 3; t test) at 10800 s. (B) Ca^{2+} shifts after 75 μ M or $150~\mu$ M gossypol with (mean \pm SD; *p<0.025; n \geq 3; t test) at 180 s with (mean \pm SD; *p<0.005; n=3; t test) at 1800 s and (mean \pm SD; *p<0.001; n \geq 3; t test) at 1800 s. (C) Ca^{2+} shifts after 8.5 mM or $10~\mu$ M H_2O_2 with (mean \pm SD; *p<0.005; n \geq 3; t test) at 1800 s. (D) Ca^{2+} shifts after $100~\mu$ M or $1000~\mu$

Competing interests

The authors declare that they have competing interests. A patent application protecting the invention has been filed (EP 12/187234).

Authors' contribution

PW, CB and TP planned and performed the experiments. All authors analysed the data. PW, CB, SB and FRA wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Thomas Huhn from University of Konstanz for generously providing us with titanium(IV)-salane complexes TC52 and TC53. This work was supported by the Vetsuisse Faculty, and a grant from the Lotte and Adolf Hotz-Sprenger Foundation, Zurich, awarded to F. R. A.

Received: 14 September 2012 Accepted: 30 January 2013 Published: 6 February 2013

References

- Williams ES, Panko J, Paustenbach DJ: The european Union's REACH regulation: a review of its history and requirements. Crit Rev Toxicol 2009, 39:553–575.
- Hofer T, Gerner I, Gundert-Remy U, Liebsch M, Schulte A, Spielmann H, Vogel R, Wettig K: Animal testing and alternative approaches for the human health risk assessment under the proposed new european chemicals regulation. Arch Toxicol 2004, 78:549–564.
- Sumantran VN: Cellular chemosensitivity assays: an overview. Methods in molecular biology 2011, 731:219–236.
- Bradbury DA, Simmons TD, Slater KJ, Crouch SP: Measurement of the ADP: ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. J Immunol Methods 2000, 240:79–92.
- Burlinson B: The in vitro and in vivo comet assays. Methods in molecular biology 2012, 817:143–163.
- Fields RD, Lancaster MV: Dual-attribute continuous monitoring of cell proliferation/cytotoxicity. Am Biotechnol Lab 1993, 11:48–50.
- Nociari MM, Shalev A, Benias P, Russo C: A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J Immunol Methods 1998, 213:157–167.
- Nakayama GR, Caton MC, Nova MP, Parandoosh Z: Assessment of the alamar blue assay for cellular growth and viability in vitro. J Immunol Methods 1997, 204:205–208.

- Florea AM, Splettstoesser F, Busselberg D: Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicol Appl Pharmacol 2007 220:292–301
- Maeda H, Hori S, Ohizumi H, Segawa T, Kakehi Y, Ogawa O, Kakizuka A: Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell death and differentiation 2004, 11:737–746.
- Shen L, Xu W, Li A, Ye J, Zhou J: JWA enhances as(2)O(3)-induced tubulin polymerization and apoptosis via p38 in HeLa and MCF-7 cells. Apoptosis 2011, 16:1177–1193.
- Cai BZ, Meng FY, Zhu SL, Zhao J, Liu JQ, Liu CJ, Chen N, Ye ML, Li ZY, Ai J, et al: Arsenic trioxide induces the apoptosis in bone marrow mesenchymal stem cells by intracellular calcium signal and caspase-3 pathways. *Toxicol Lett* 2010, 193:173–178.
- 13. Tang CH, Chiu YC, Huang CF, Chen YW, Chen PC: **Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress.** *Toxicol Appl Pharmacol* 2009, **241**:173–181.
- Sikora MJ, Bauer JA, Verhaegen M, Belbin TJ, Prystowsky MB, Taylor JC, Brenner JC, Wang S, Soengas MS, Bradford CR, Carey TE: Anti-oxidant treatment enhances anti-tumor cytotoxicity of (–)-gossypol. Cancer Biol Ther 2008. 7:767–776
- Benz CC, Keniry MA, Ford JM, Townsend AJ, Cox FW, Palayoor S, Matlin SA, Hait WN, Cowan KH: Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers. Mol Pharmacol 1990. 37:840–847.
- Arnold AA, Aboukameel A, Chen J, Yang D, Wang S, Al-Katib A, Mohammad RM: Preclinical studies of apogossypolone: a new nonpeptidic pan smallmolecule inhibitor of Bcl-2, Bcl-XL and Mcl-1 proteins in follicular small cleaved cell lymphoma model. Mol Cancer 2008, 7:20.
- Balakrishnan K, Wierda WG, Keating MJ, Gandhi V: Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells. Blood 2008. 112:1971–1980.
- 18. Niu X, Li S, Wei F, Huang J, Wu G, Xu L, Xu D, Wang S: Apogossypolone induces autophagy and apoptosis in breast cancer MCF-7 cells in vitro and in vivo. *Breast Cancer* 2012.
- Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, et al: Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 2006, 103:18308–18313.
- Blenn C, Wyrsch P, Bader J, Bollhalder M, Althaus FR: Poly(ADP-ribose) glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death. Cellular and molecular life sciences: CMLS 2011, 68:1455–1466.
- Wyrsch P, Blenn C, Bader J, Althaus FR: Cell death and autophagy under oxidative stress: roles of poly(ADP-ribose)polymerases and Ca2+. Mol Cell Biol 2012. 17:3541–3553.
- Choi SE, Min SH, Shin HC, Kim HE, Jung MW, Kang Y: Involvement of calcium-mediated apoptotic signals in H2O2-induced MIN6N8a cell death. Eur J Pharmacol 2006, 547:1–9.
- Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F: Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun 1986, 135:397–402.
- Ruegg UT, Burgess GM: Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. *Trends Pharmacol Sci* 1989, 10:218–220.
- Herbert JM, Seban E, Maffrand JP: Characterization of specific binding sites for [3H]-staurosporine on various protein kinases. Biochem Biophys Res Commun 1990, 171:189–195.
- Kruman I, Guo Q, Mattson MP: Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 1998, 51:293–308.
- Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H, Chen Q: Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 2010, 1:468–477.
- Van den Broeke C, Radu M, Nauwynck HJ, Chernoff J, Favoreel HW: Role of group a p21-activated kinases in the anti-apoptotic activity of the pseudorabies virus US3 protein kinase. Virus Res 2011, 155:376–380.
- Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P: Comparison of alamar blue and MTT assays for high through-put screening. *Toxicol In Vitro* 2004, 19:703, 710.
- Page B, Page M, Noel C: A new fluorometric assay for cytotoxicity measurements in-vitro. Int J Oncol 1993, 3:473–476.

- Michelangeli F, Ogunbayo OA, Wootton LL: A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol 2005, 17:135–140.
- 32. Orrenius S, Nicotera P, Zhivotovsky B: **Cell death mechanisms and their implications in toxicology.** *Toxicological sciences: an official journal of the Society of Toxicology* 2011, **119**:3–19.
- 33. Hansen KB, Brauner-Osborne H: FLIPR assays of intracellular calcium in GPCR drug discovery. *Methods Mol Biol* 2009, **552**:269–278.
- Immel TA, Debiak M, Groth U, Burkle A, Huhn T: Highly selective apoptotic cell death induced by halo-salane titanium complexes. Chem Med Chem 2009. 4:738–741.
- Wang Q, Li X, Wang L, Feng YH, Zeng R, Gorodeski G: Antiapoptotic effects of estrogen in normal and cancer human cervical epithelial cells. Endocrinology 2004, 145:5568–5579.
- Ralevic V, Burnstock G: Receptors for purines and pyrimidines. Pharmacol Rev 1998, 50:413–492.
- Liu PS, Chiung YM, Kao YY, Chen HT: 2,4-Toluene diisocyanate suppressed the calcium signaling of ligand gated ion channel receptors. *Toxicology* 2006. 219:167–174
- Welter-Stahl L, da Silva CM, Schachter J, Persechini PM, Souza HS, Ojcius DM, Coutinho-Silva R: Expression of purinergic receptors and modulation of P2X7 function by the inflammatory cytokine IFNgamma in human epithelial cells. Biochim Biophys Acta 2009, 1788:1176–1187.
- Zheng LM, Zychlinsky A, Liu CC, Ojcius DM, Young JD: Extracellular ATP as a trigger for apoptosis or programmed cell death. The Journal of cell biology 1991, 112:279–288.
- Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, et al: Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nature medicine 2012, 18:600–604.
- 41. Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR: Cytolytic P2X purinoceptors. *Cell death and differentiation* 1998, **5:**191–199.
- Chow SC, Kass GE, Orrenius S: Purines and their roles in apoptosis. Neuropharmacology 1997, 36:1149–1156.
- Hanley PJ, Kronlage M, Kirschning C, del Rey A, Di Virgilio F, Leipziger J, Chessell IP, Sargin S, Filippov MA, Lindemann O, et al: Transient P2X7 receptor activation triggers macrophage death independent of toll-like receptors 2 and 4, caspase-1, and pannexin-1 proteins. J Biol Chem 2012, 287:10650–10663.
- 44. Mirabelli F, Bellomo G, Nicotera P, Moore M, Orrenius S: Ca2+ Homeostasis and cytotoxicity in isolated hepatocytes: studies with extracellular adenosine 5'-triphosphate. *J Biochem Toxicol* 1986, 1:29–39.
- Kawano A, Tsukimoto M, Noguchi T, Hotta N, Harada H, Takenouchi T, Kitani H, Kojima S: Involvement of P2X4 receptor in P2X7 receptor-dependent cell death of mouse macrophages. Biochem Biophys Res Commun 2012, 419:374–380.
- Dantzer F, Ame JC, Schreiber V, Nakamura J, Menissier-de Murcia J, de Murcia G: Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol 2006, 409:493–510.
- Malanga M, Althaus FR: The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol 2005, 83:354–364.
- Realini CA, Althaus FR: Histone shuttling by poly(ADP-ribosylation). J Biol Chem 1992, 267:18858–18865.
- Wang Z, Wang F, Tang T, Guo C: The role of PARP1 in the DNA damage response and its application in tumor therapy. Front Med 2012, 6:156–164.
- Cohausz O, Blenn C, Malanga M, Althaus FR: The roles of poly(ADP-ribose)metabolizing enzymes in alkylation-induced cell death. Cellular and molecular life sciences: CMLS 2008, 65:644

 –655.
- 51. Aouida M, Ramotar D: A new twist in cellular resistance to the anticancer drug bleomycin-A5. *Curr Drug Metab* 2010, 11:595–602.
- Kawamitsu H, Hoshino H, Okada H, Miwa M, Momoi H, Sugimura T: Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures. Biochemistry-Us 1984, 23:3771–3777.

doi:10.1186/1478-811X-11-11

Cite this article as: Wyrsch et al.: Cytosolic Ca²⁺ shifts as early markers of cytotoxicity. Cell Communication and Signaling 2013 11:11.